项目名称: DNA编码组装高灵敏的纳米哑铃SERS标记免疫探针的研究

项目编号: No.21305142

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 刘洪林

作者单位: 中国科学院合肥物质科学研究院

项目金额: 25万元

中文摘要: 基于Raman标签的表面增强拉曼光谱(SERS),因其独特的指纹特征、超灵敏、多重检测等优势,成为标记免疫检测领域的研究重点之一。SERS标记免疫检测面临的核心科学问题之一是:高产率构筑高增强活性纳米结构的同时,如何可控地定位Raman标签并稳定地修饰抗体分子。本项目以此为目标牵引,采用DNA编码组装策略,解决Raman标签定位的可控性问题和抗体分子修饰的稳定性问题:①组装间隙距离固定的Au纳米颗粒二聚体(纳米哑铃),并在其表面包覆不同厚度的Ag壳,实现二聚体的间隙大小在3 nm范围内的可调可控;②利用DNA编码组装,重点发展在哑铃间隙内可控标记Raman标签以及在哑铃表面稳定修饰抗体分子的方法。使得每个纳米粒子具备一个标记有Raman标签的热点,而且表面稳定修饰一种抗体分子,获得高灵敏、高稳定的SERS标记免疫探针。项目预期成果将为SERS标记免疫探针的设计与调控提供新的思路。

中文关键词: 表面增强拉曼;自组装;热点;等离子体共振;液态界面

英文摘要: Surface enhanced Raman scattering (SERS) tags has been gradually applied in the field of protein detection because of its unique fingerprint characteristics, ultra-sensitivity, and the capability of multiple detection. In fact, the occurrence of distributed hot spots on SERS-active nanostructures has great randomness, leading to a wide distribution of enhancement factor values. Generally, SERS-based immunoassay faces an essential problem with structural reproducibility, as particle structure and interparticle distance can markedly affect Raman signals. Hence, high-yield assembling SERS-active nanoparticles into well-defined and reproducible hot SERS nanostructures, and synchronously marking the SERS tags and modifying specific molecule on individual SERS-active nanostructure would be greatly beneficial. In this project, based on a DNA-programmed synthetic strategy and a subsequent magnetic-particle-based separation method, 1) gold nanoparticles (Au NPs) were assembled into a dimeric structure, then Ag shells were formed on the surface of the dimeric Au NPs, and the Ag shell thickness was controlled on the nanometre scale to generate gap-engineerable, DNA-embedded nanodumbbells; 2) Importantly, taking advantage of the DNA-programmed assembly process, we will focus on the development of controllably marking the SE

英文关键词: surface-enhanced Raman;self-assembly;hotspot;plasma resonance;liquid-state interfacial

成为VIP会员查看完整内容
0

相关内容

【ICLR2022】通过传播网络编码学习通用的神经结构
专知会员服务
12+阅读 · 2022年2月13日
专知会员服务
15+阅读 · 2021年10月4日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
51+阅读 · 2020年12月28日
把DNA换成RNA,有望创造强大、可持续的生物计算机
大数据文摘
0+阅读 · 2022年3月31日
使用深度学习,通过一个片段修饰进行分子优化
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2018年3月23日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2018年3月23日
微信扫码咨询专知VIP会员