项目名称: 血晶素提高秸秆厌氧发酵产甲烷的微生物学机制研究
项目编号: No.21506085
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 有机化学
项目作者: 奚永兰
作者单位: 江苏省农业科学院
项目金额: 21万元
中文摘要: 作为能源化利用的重要技术途径,在秸秆厌氧发酵中添加电子载体由于能显著提高发酵转化率而引起众多研究者的关注。然而,目前研究者对电子载体在这种复杂发酵反应中的具体微生物学机制还缺乏初步了解,从而阻碍其生物转化性能的进一步提高。为此,本项目拟在前期研究成果基础上,以典型的电子载体血晶素作为添加外源,结合近红外荧光标记技术和高通量测序技术,对其提高甲烷产量的具体作用机制进行明确的研究。具体地,首先采用两相厌氧消化法,初步明确血晶素添加在发酵体系中具体作用的阶段;进一步地,用近红外荧光纳米晶标记血晶素,利用近红外荧光成像的手段,以可视化的方法明确厌氧消化过程中血晶素具体作用的微生物菌系,揭示外源电子载体与厌氧呼吸强度之间的响应关系;最后,对该菌系及产甲烷菌群进行高通量测序,研究血晶素对微生物群落结构的影响,从而初步阐明血晶素促进甲烷产量提高的微生物学机制。
中文关键词: 血晶素;甲烷;厌氧发酵;近红外荧光标记;高通量
英文摘要: Due to the fermentation conversion rate can be improved significantly by electronic carrier is added in the straw anaerobic fermentation,which is an important technology of energy-oriented utilization, much attention has been given to the field. However, lacking an understanding of microbial mechanism about electronic carrier in the complex fermentation reaction and limited the straw bioconversion to further improve. Thus, this project is based on the previous research, and heme is used a typical electronic carrier as adding exogenous, combining near-infrared fluorescence labeling techniques and high-throughput sequencing technologies to study the mechanism of heme to improve methane production. Firstly, using two phase anaerobic digestion method to study the roles of heme in the specific fermentation stage. Secondly, heme is marked by near-infrared fluorescence nanocrystals, use the way of near-infrared fluorescence imaging to realize visualization research, analyze the effect of heme on the specific microbial strains, and reveal the response relationship between exogenous electronic carrier and the intensity of anaerobic respiration. Lastly, the bacteria and methane-producing bacterias are by high throughput sequencing to study the effect of heme on microbial community structure. This project will preliminary display the microbial mechanism of the improvement of methane production by heme supplement.
英文关键词: heme;methane;anaerobic fermentation;near infrared fluorescent labeling;high-throughput