项目名称: 基于用户观看时间测量和模型的网络视频系统优化

项目编号: No.61301082

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 陈一帅

作者单位: 北京交通大学

项目金额: 25万元

中文摘要: 随着宽带网络的快速普及,网络视频已成为互联网最主要的承载业务。研究用户观看时间,有助于理解互联网用户的视频观看行为,评估用户粘性,估计系统负载和优化系统算法。然而,由于缺乏充分的测量数据支持,对用户观看时间的研究一直不系统、不精确、不全面,没有建立用户观看时间的准确模型。本研究拟基于国内主流网络视频业务提供商提供的海量、高精度、内容丰富的用户观看行为测量数据,通过大规模数据分析和挖掘,发现用户观看时间与用户、视频、环境、演播质量等因素之间的关系,建立用户观看时间的分布模型和预测模型。基于上述模型,比较分析目前流行的网络视频系统中采用的客户端预取策略和网络缓存策略的性能,提出新的优化算法。本研究意在揭示互联网用户视频观看行为的本质特征,建立网络视频用户服务模型,理论评估和优化系统算法。本研究的成果对于提升网络视频传输的效率,促进网络视频技术的发展和系统优化具有重要意义。

中文关键词: 网络视频;视频流媒体;用户行为;;

英文摘要: As the penetration of broadband Internet access, online video streaming service has become a dominant application on the Internet. Video watching time is a crucial measure for studying user watching behavior in online Internet video-on-demand (VoD) systems. It is important for system planning, user engagement understanding, system quality evaluation and algorithm optimization. However, due to the limited access of user data in large-scale streaming systems, a systematic measurement, analysis, and modeling of video watching time is still missing. In this proposal, we plan to analyze and model users' video watching time based on a large-scale trace collected in PPLive, one of the most popular commercial Internet video-on-demand (VoD) systems in China. Based on the measurement data, we plan to characterize the distribution of watching time of different videos and reveal the characteristics regarding the relation between video watching time and various user/video/context/playback quality-related features. We further plan to build a suite of mathematical and data-mining based models for characterizing these relationships and predicting users' video watching time. Based on the measurement and modeling results, we plan to theoretically evaluate existing client prefetch algorithms and server prefix caching algorithms

英文关键词: Online video;Video streaming;User behavior;;

成为VIP会员查看完整内容
0

相关内容

WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
37+阅读 · 2022年1月3日
【博士论文】集群系统中的网络流调度
专知会员服务
44+阅读 · 2021年12月7日
专知会员服务
13+阅读 · 2021年9月13日
专知会员服务
19+阅读 · 2021年7月20日
专知会员服务
28+阅读 · 2021年6月18日
【WWW2021】 大规模组合K推荐
专知会员服务
44+阅读 · 2021年5月3日
专知会员服务
52+阅读 · 2020年12月19日
专知会员服务
46+阅读 · 2020年11月13日
个性化推荐系统技术进展
专知会员服务
66+阅读 · 2020年8月15日
你有订阅视频平台会员服务吗?
ZEALER订阅号
0+阅读 · 2021年12月18日
文末赠书 | 实用推荐系统: 寻找有用的用户行为
机器学习与推荐算法
1+阅读 · 2021年11月12日
用户分析体系,该如何搭建
人人都是产品经理
0+阅读 · 2021年10月20日
【WWW2021】 大规模组合K推荐
专知
0+阅读 · 2021年5月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
19+阅读 · 2020年7月13日
小贴士
相关VIP内容
WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
37+阅读 · 2022年1月3日
【博士论文】集群系统中的网络流调度
专知会员服务
44+阅读 · 2021年12月7日
专知会员服务
13+阅读 · 2021年9月13日
专知会员服务
19+阅读 · 2021年7月20日
专知会员服务
28+阅读 · 2021年6月18日
【WWW2021】 大规模组合K推荐
专知会员服务
44+阅读 · 2021年5月3日
专知会员服务
52+阅读 · 2020年12月19日
专知会员服务
46+阅读 · 2020年11月13日
个性化推荐系统技术进展
专知会员服务
66+阅读 · 2020年8月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员