项目名称: 沸腾液体膨胀蒸气爆炸(BLEVE)微观动力学演化过程及其抑制机理研究
项目编号: No.50804042
项目类型: 青年科学基金项目
立项/批准年度: 2009
项目学科: 生物科学
项目作者: 陈思凝
作者单位: 中国安全生产科学研究院
项目金额: 25万元
中文摘要: 随着现代工业化进程的加快,沸腾液体膨胀蒸气爆炸(BLEVE)作为典型的重大事故类型引发了广泛关注,对其进行机理研究是进一步展开事故防治所必须的科学基础。本研究中利用自制的小型BLEVE模拟实验装置和高速摄像系统,拍摄容器破裂瞬间内部过热液体的爆炸性沸腾以及高速气液两相流生成和膨胀的微观动力过程,研究了爆炸过程中热能快速转变为运动能的方法、途径和原理。结合容器内温度、压力实时变化的基础数据,分析了两相系统的快速膨胀、再增压与器壁之间约束与反约束的相互作用,揭示流体与约束力之间相互适应的复杂作用机制。通过对比变工况条件下介质相变及运动的高速显微图像,研究了不同工况条件下BLEVE发生、发展的动力学演化规律,揭示了不同初始条件耦合作用对事故后果强度产生影响的内在机理。在研究结果的基础上,进一步探索HAN技术对BLEVE过程中剧烈相变和两相膨胀的抑制机理,为预防控制BLEVE提供理论基础和实验依据。
中文关键词: 沸腾液体膨胀蒸气爆炸;两相流;微观过程;抑制机理
英文摘要: With the acceleration of the modern industrialization process, boiling liquid expanding vapor explosion (BLEVE) generates widespread concern as a typical type of major accidents. Researching the mechanism of BLEVE is the scientific basis to prevent this accident from happening. This study uses self-made small-scale BLEVE simulation devices and high-speed camera system to catch the explosive boiling of the internal overheated liquid and the micro-dynamic process of the generation and expansion of the high speed two-phase gas-liquid flow, and to research the methods, means and principles of the heat energy's rapidly changing to kinetic energy during the explosion progress. The restraint and anti-restraint between the rapid expansion and re-pressurization and the vessel wall should be analyzed with the basic real-time data of the temperature and pressure in the vessel. The complex action mechanism between the liquid and the restraint should be researched. By comparing the high-speed micro-image of the motion and the phase change under the variable conditions, BLEVE's happening and developing dynamics evolvement discipline could be researched under different original conditions. Based on the research work, further studying will focus on the mechanism of how the HAN technology restrains the acute phase change and two-phase expansion. It could provide theoretical principle and experimental basis to prevent and control BLEVE.
英文关键词: boiling liquid expanding vapor explosion; two-phase flow; microscopic process; restraint mechanism