项目名称: 高强度骨修复支架材料的仿生可控构筑及降解速率的调控

项目编号: No.51473144

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 胡巧玲

作者单位: 浙江大学

项目金额: 83万元

中文摘要: 以壳聚糖为原料,采用仿生物骨结构的设计,将三种对称有序的结构(纵向同心圆柱状层状叠加结构,横向同心辐射条状结构,辐射条以双螺旋结构堆砌结构)巧妙地融合为一体,以原位沉析法、冷冻爆破法,构建出高强度的仿骨结构支架材料。以材料微结构的控制来提高适合骨组织再生的微环境,并在仿骨结构的壳聚糖基模板上进行羟基磷灰石的仿生矿化,使得纳米羟基磷灰石在壳聚糖基骨架材料上呈梯度有序分布,赋予支架材料与骨细胞和骨组织具有更好的生物相容性和骨生长诱导性和引导性,快速促进骨修复。通过控制壳聚糖的脱乙酰度和分子量,控制羟基磷灰石的含量、粒径的大小、分布方式和堆积密度进行调控支架材料的降解速率与新骨再生速率的匹配;以荧光标记壳聚糖示踪支架材料的制备、结构形成和降解过程。通过本项目的研究,获得一种结构可控、降解速率可调、机械强度高、生物相容性好,能快速促进骨缺损修复的支架材料,以满足临床应用要求。

中文关键词: 壳聚糖;组织工程;生物医用材料

英文摘要: Construction of chitosan scaffolds with symmetrical ordered structure and uniformly distributed pores via bionic structure of bone, which is assembled under different pH value, based on the in-situ precipitation method established by our group. Micro environment for bone tissue regeneration could be adapted by controlling the microstructure of material. Hydroxyapatite will be mineralized on the chitosan-based template with bionic bone structure, thus nano- hydroxyapatite could be orderly gradiently distributed in the citosan scaffolds, endowing the scaffolds with excellent biocompatibility, bone growth inductivity and bone growth guiding properties, and accelerating bone tissue regeneration. Matching the degradation rate of the scaffolds and regeneration rate of new bone could be achieved by controlling the degree of deacetylation and molecular weight of chitosan, and controlling the content, size, distribution mode and packing density of hydroxyapatite. Tracing the whole process of preparation, degradation of scaffolds by fluorescent labeling technology. Establishing a technology for building three-dimensional ordered and structure-controlled scaffold with high mechanical properties, which should be an ideal implant material for clinical bone repair.

英文关键词: chitosan;tissue engineering;biomedical material

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
智能无人集群系统发展白皮书
专知会员服务
271+阅读 · 2021年12月20日
智能世界2030八大展望
专知会员服务
48+阅读 · 2021年9月27日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2021年4月10日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
智能无人集群系统发展白皮书
专知会员服务
271+阅读 · 2021年12月20日
智能世界2030八大展望
专知会员服务
48+阅读 · 2021年9月27日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2021年4月10日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员