项目名称: 各向异性电介质与金属微纳结构共振耦合光学特性研究

项目编号: No.11204251

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 陈俊学

作者单位: 西南科技大学

项目金额: 25万元

中文摘要: 金属微纳结构中表面等离激元模式间的耦合效应提供了一种在纳米尺度上操控光子的有效方法,利用模式耦合效应不仅可以裁减结构的光学性质,增加结构光谱响应的可调谐性,而且可以产生许多奇异的光学现象。本项目以分析各向异性电介质中局域表面等离激元的性质为基础,系统研究各向异性电介质波导与金属微纳结构阵列共振耦合的光学特性;阐述不同金属微纳结构阵列(包括不同的结构形状和结构排列)中局域电磁模式与各向异性波导模式间的耦合行为以及耦合模式的色散特性和近场能量局域特性;探明在外场激励下耦合模式间的相互干涉机制及其对出射光的调制特性;明确干涉机制与入射光偏振,各向异性电介质光轴取向的变化关系。该项目的研究将为新型光电子器件的设计以及微纳尺度光场的主动调控提供重要的参考价值。

中文关键词: 表面等离激元;各向异性材料;模式耦合;电磁感应透明;

英文摘要: The mode coupling of surface plasmon polaritons (SPP) in micro/nano metallic structure represents a feasible and practical approach for manipulating the photons at the nanometer scale. Based on the coupling effect, it can not only be used to facilitate the spectral tunability and tailor the optical response of the structure, but also offer many exotic optical phenomenons.First, this works will analyze the characteristics of local surface plasmons of metal structure surrounded by anisotropic dielectric, then study systematically the optical properties of the micro/nano metallic structure coupled with anisotropic dielectric waveguide.We will illustrate the coupling behavior between the waveguide mode guided in anisotropic dielectric and the local electromagnetic mode localized in different micro/nano metallic structure array (including the different shape and arrangement of metal structure), the dispersion behavior and the near field distribution of the coupled modes. We will explore the physical mechanism to form the interference phenomena among the coupled modes excited by external excitation and the modulation behavior to the output light due to the interference. Furthermore, we will make clear the function relation of the interference mechanism to the polarization of incident beam and the dielectric tensor of

英文关键词: surface plasmon polaritons;anisotropic dielectric;mode coupling;electromagnetic induced transparency;

成为VIP会员查看完整内容
0

相关内容

《城市大脑发展白皮书(2022)》发布!
专知会员服务
119+阅读 · 2022年1月8日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
27+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
19+阅读 · 2020年12月23日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知
0+阅读 · 2021年12月26日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
15+阅读 · 2019年6月25日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《城市大脑发展白皮书(2022)》发布!
专知会员服务
119+阅读 · 2022年1月8日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
27+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
19+阅读 · 2020年12月23日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知
0+阅读 · 2021年12月26日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员