项目名称: 光晶格中一系列涡旋态的超冷原子系统的高阶关联理论研究
项目编号: No.10804123
项目类型: 青年科学基金项目
立项/批准年度: 2009
项目学科: 电工技术
项目作者: 刘淑娟
作者单位: 中国科学院武汉物理与数学研究所
项目金额: 17万元
中文摘要: 超冷玻色和费米原子气体的高阶关联是冷原子物理中的一个新兴课题。高阶关联为研究超冷原子体系的基本性质提供了强有力工具。本项目的研究工作主要集中在研究光晶格中一系列非相干涡旋(或者带有轨道角动量的一系列非相干原子)在自由膨胀后的高阶关联,并结合目前人们的实验水平和发展前景,提出了可行的实验方案。该研究既可以探索涡旋独特的相位结构在高阶关联中产生的新奇效应,又可以提供重要的信息来进一步探索光晶格中一系列涡旋态在改变光晶格强度时的量子相变这一还不完全清楚的重要物理问题。同时我们还考察了在光晶格超流的情况激发涡旋,释放光晶格和磁阱后的自由膨胀,理论和数值计算都表明可以形成一系列涡旋,而且由于受边锋运动的影响,其相位分布呈现出独特的刀叉结构。此外,采用双模近似下的Bose-Hubbard模型,我们还从理论上分析和计算了双阱中玻色-爱因斯坦凝聚体的干涉和奇偶效应。
中文关键词: 冷原子;光晶格;涡旋;高阶关联;相位分布
英文摘要: The high-order correlation is a new topic in ultracold bosonic and fermionic gases. High-order correlation provides powerful tool to reveal the novel properties in ultracold atomic gases. We have theoretically studied the high-order correlation for a series of independent vortices ( or incoherent atoms with nonzero orbital angular momentum ) released from an optical lattice. Based on the present experimental level and future development, we propose a feasible experimental scheme to inspect our theory. This study could explore the novel effect in the high-order correlation because of the unique phase structure in the vortex. In addition, it would provide important information to explore the quantum phase transition for a series of vortices trapped in the optical lattices, which is still an unclear problem. For a quantized vortex in a harmonic trap and an optical lattice, we study the interference effect after the combined potentials are switched off. Both numerical and analytical calculations show that there is a vortex splitting in the interference effect of this freely expanding quantum gas. The phase distribution displays a unique fork-like phase structure, which originates from the side interference patterns. By using a decoupled two-mode Bose-Hubbard model, we theoretically investigate and calculate the interference and the even/odd parity effect of Bose condensates released from a double-well potential.
英文关键词: Cold atoms; Optical lattice; Vortex; High-order correlation; Phase distribution