项目名称: 基于高光谱热红外数据的大气廓线、地表温度和比辐射率一体化反演研究
项目编号: No.41201367
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 地理学
项目作者: 王宁
作者单位: 中国科学院光电研究院
项目金额: 25万元
中文摘要: 地表温度、比辐射率和大气温湿廓线在多个学科领域发挥着重要作用。热红外遥感是获取区域以及全球尺度上地表和大气参数最为有效地方式之一。由于热红外谱段温度和比辐射率之间的耦合性以及地表、大气参数之间的关联性,利用多光谱遥感的方式难以有效同时对地表和大气参数进行反演,并且较多先验知识的引入影响到最终的反演精度。本项目充分挖掘高光谱热红外数据的优势,在模拟数据的基础上,分析不同通道对地表、大气参数的敏感性,提出可用于地表和大气参数同时反演的高光谱热红外数据通道选择方案。在此基础上,开展一体化反演初值估计方法、地物波谱及大气廓线变化特征及反演求解策略和参数优化等方面的研究,构建高光谱热红外数据大气温湿廓线、地表温度和比辐射率一体化反演模型。最后利用卫星产品和大气探空数据对一体化反演结果进行检验。本研究能够为未来我国高光谱热红外载荷设计、研制以及数据应用提供必要的技术支撑,具有重要的理论和应用价值。
中文关键词: 热红外遥感;地表温度;比辐射率;大气温度和湿度廓线;高光谱遥感
英文摘要: Land surface temperature (LST), emissivity and temperature and humidity profile of atmosphere are of important roles in many studies. The utilization of thermal infrared (TIR) remote sensing is the most efficient way to acquire the LSTs, emissivities and atmospheric profiles in the local or the global scale. However, it is difficult to retrieve both the land surface and atmospheric parameters simultaneously from the multi-spectral TIR data, and the introduction of much a priori knowledge will affect the retrieval accuracies, because of the coupling of LST and emissivity in the TIR and complex inter-effects of land surface and atmospheric parameters. In this proposal, the potential of hyperspectral TIR data will be deeply explored in retrieval of LST, emissivity and atmospheric profiles. With the simulated hyperspectral TIR data, the sensitivity of different channel observations to various retrieval parameters, which include LST, emissivity and atmospheric profiles, will be analyzed to form the channel-selection scheme. Subsequently, in order to build the model of simultaneous retrieval of LST, emissivity and atmospheric profiles, some key issues will be focused on, including the method for estimating the initial values of retrieval parameters, the characteristic of the variations of land surface emissivity spect
英文关键词: thermal infrared remote sensing;land surface;emissivity;temperature and humidity profile;hyper-spectral remote sensing