Cities often lack up-to-date data analytics to evaluate and implement transport planning interventions to achieve sustainability goals, as traditional data sources are expensive, infrequent, and suffer from data latency. Mobile phone data provide an inexpensive source of geospatial information to capture human mobility at unprecedented geographic and temporal granularity. This paper proposes a method to estimate updated mode of transportation usage in a city, with novel usage of mobile phone application traces to infer previously hard to detect modes, such as bikes and ride-hailing/taxi. By using data fusion and matrix factorisation, we integrate socioeconomic and demographic attributes of the local resident population into the model. We tested the method in a case study of Santiago (Chile), and found that changes from 2012 to 2020 in mode of transportation inferred by the method are coherent with expectations from domain knowledge and the literature, such as ride-hailing trips replacing mass transport.
翻译:城市往往缺乏最新的数据分析,无法评价和实施交通规划干预措施,以实现可持续性目标,因为传统数据来源昂贵,不常见,而且存在数据延迟。移动电话数据提供了廉价的地理空间信息来源,以前所未有的地理和时间颗粒度记录人类流动情况。本文建议了一种方法来估计城市最新的交通使用方式,新用移动电话应用痕迹来推断以前难以检测的模式,如自行车和乘车/税等。通过数据聚合和矩阵化,我们将当地居民的社会经济和人口特征纳入模型。我们在圣地亚哥(智利)的案例研究中测试了这种方法,发现从2012年至2020年,该方法推断的交通方式变化与对领域知识和文学的期望是一致的,例如乘车旅行取代了大规模交通。