项目名称: 基于同化策略的地表温度多模式降尺度方法及其不确定性研究
项目编号: No.41271345
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 天文学、地球科学
项目作者: 杨贵军
作者单位: 北京市农林科学院
项目金额: 75万元
中文摘要: 开展农田区域地表温度降尺度方法及其不确定性研究,为作物生长全程干旱监测、田块尺度蒸散发估算及精准灌溉决策提供技术与方法支持,从而提高农田水分利用效率,为遥感技术在精准农业中的进一步应用奠定理论基础。本申请项目针对农田非均一条件下多模式地表温度降尺度方法及其同化策略相关科学问题,将高空间/低时间和高时间/低空间两种分辨率光学遥感数据进行优势互补,综合运用遥感、农学、数学和计算机等知识,主要开展以下研究:(1)对不同时空尺度下地表温度与地表覆盖特征、光谱指数等尺度转换因子进行敏感性分析;(2)建立面向中低空间分辨率热红外数据与高空间分辨率可见-近红外数据相结合的'端元指数'温度降尺度方法;(3)将尺度转换因子作为驱动数据,不同降尺度方法作为同化模型算子,建立地表温度降尺度方法的统一同化策略及综合模式;(4)对扩展田块尺度地表温度进行验证,对不同降尺度方法在估算农田蒸散中的不确定性进行定量分析。
中文关键词: 降尺度方法;同化策略;地表温度;多源遥感数据;不确定性
英文摘要: In order to support crop drought monitoring, field scale evapotranspiration estimating and field precision irrigation during the whole growth period,we carry out the study of methods of land surface temperature(LST) downscaling over agricultural area and its uncertainty, to improve crop water use efficiency, which aslo can lay the theoretical foundation for further appliying remote sensing technology in precision agriculture.We focus on issues of multi-model LST downscaling methods and its uncertainty over non-uniform agricultural area,using both high spatial resolution/low temperal resolution and coarse spatial resolution/high temperal resolution to make a complement for each other, also remote sensing, agriculture, mathematics and computer knowledge are employed to carry out following studies:(1) select different kinds of sensitivity scaling factors for LST downscaling, e.g. land cover characteristics,spectral index and reflectance;(2)establish the 'endmumber-index'technique to downscale LST by combinations of the low spatial resolution LST and the high spatial resolution visible-nearinfrared(VNIR) data;(3)build the assimilation strategy and model through the scaling factor as a driver, different downscaling methods as the assimilation model operator, and (4) perform field experiments of LST and flux to verify
英文关键词: Downscaling method;Assimilation strategies;Land surface temperature;Multi-source remote sensing data;Uncertainty