项目名称: 氧化铟/金属硫族化合物纳米管阵列异质结的构筑与光电化学制氢性能

项目编号: No.51302111

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 李浩华

作者单位: 江苏大学

项目金额: 25万元

中文摘要: 光阳极材料是决定光电化学池性能的最重要因素之一,如何获得具有高的可见光吸收效率、光生载流子输运效率的宽禁带过渡金属氧化物-窄禁带金属硫族化合物II型异质结复合材料是目前的研究热点和难点。本项目针对In2O3性能优越但因导带能级较高而难以与其他窄禁带金属硫族化合物形成II型异质结构的问题,提出通过调控其浅施主杂质浓度在提升其光电化学性能的同时有效降低其导带能级位置这一策略,利用氢氧化铟热分解过程以及一维纳米结构在对调控氧空位浓度方面体现出的优势,在以一维氧化锌纳米棒为模板结合热处理法制备一维氧化铟纳米管的基础上实现In2O3/窄禁带金属硫族化合物纳米管阵列II型异质结的构筑及其光电化学析氢性能,并籍此深入研究复合材料的形貌,结构,组成与光电化学性能的内在联系,为开发和应用高性能的光阳极材料和光电化学池器件提供重要的理论依据与技术支持。

中文关键词: 光电化学分解水;氧化铟;氧化铈;银;II型异质结

英文摘要: The performance of photoanode materials is one of the most importance factors for photoelectrochemical cells. How to obtain type II heterostructures with high absorption efficiency of visible light and transporting efficiency of photo-generated charge-carrier transportation which are composed of tradition-metal oxide with wide-bandgap and metal chalcogenide with narrow-bandgap has attracted considerable attention. Indium oxide (In2O3) is of great interest due to its excellent photoelectrochemical properties. However, the design of type II heterostructures based on Indium oxide is limited due to its the negative conduction band potential. Based on the above discussion, we can regulate the donor densities in order to improve its photoelectrochemical properties and adjust the conduction band position. The thermal decomposition behavior of In(OH)3 and the design of one-dimensional nanostructures is beneficial for introducing oxygen vacancies into In2O3. Therefore, in this project, we will focus on the design and synthesis of nanotube heterojuctions exhibiting type II feature and its electrochemical properties, which is composed of In2O3 and metal chalcogenide with narrow-bandgap. This approach is on the basis of the In2O3 nanotubes with appropriate band structure which is fabricated by `template of ZnO nanorod array

英文关键词: Photoelectrochemical water splitting;In2O3;CeO2;银;II型异质结

成为VIP会员查看完整内容
0

相关内容

【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
15+阅读 · 2021年11月18日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2020年8月8日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
小贴士
相关主题
相关VIP内容
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
15+阅读 · 2021年11月18日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2020年8月8日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
相关资讯
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员