项目名称: 磁性石墨烯复合材料对完整蛋白质的富集分离研究

项目编号: No.21475027

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 高明霞

作者单位: 复旦大学

项目金额: 80万元

中文摘要: 本研究拟发展一种具有核-壳结构的功能化磁性石墨烯纳米材料,结合LC-MS技术,建立对生物样品中的低丰度完整蛋白质快速富集与分析的新方法。本研究首先合成具有高磁响应性及良好分散性的磁性微球,然后对磁球进行功能化修饰,一方面为后面的合成修饰一些必要的官能团,另一方面起到了保护磁核,增强材料亲水性和分散性的作用;再把石墨烯壳层通过共价键合或者静电相互作用包覆在修饰过后的四氧化三铁磁核表面,形成核-壳结构,这样石墨烯的结合量会更大,进而吸附位点和负载容量也会大大提高。制得的磁性石墨烯材料将通过不同性质的标准蛋白质来验证其富集效能,利用磁性分离技术,将吸附了蛋白质的磁性纳米材料快速与基体溶液分离开来,洗脱下来的蛋白质经过酶解后采用MALDI-TOF-MS或者LC-MS进行分析鉴定。最后该新方法用于富集分离肝脏和血清等复杂样品中的低丰度蛋白质,以期找到潜在的生物标志物。

中文关键词: 磁性纳米粒子;蛋白质组;液相色谱-质谱;色谱分离;样品前处理

英文摘要: This study intends to develop functional magnetic graphene-based nanomaterials for enrichment and separation of intact protein in proteomics analysis.Firstly magnetic microspheres having a high magnetic responsiveness and good dispersibility will be synthesized. Then, the magnetic cores are modified with different functional groups, which also serve to protect the magnetic core. Finally, graphenes as shell are bonded to the magnetic core by covalent binding or an electrostatic interaction. Such core-shell structure endows magnetic graphene nanocomposites obvious advantages, such as good stablility, more adsorption sites and high load capacity for target sample. The standard proteins will be employed to test the high enrichment efficiency of Fe3O4@SiO2@G core-shell composites. With the help of external magnetic field, nanoparticles absorbed with proteins can be rapidly separated from the solution. After the elution, the proteins will be digested and then identified using MALDI-TOF-MS or LC-MS.The new method will be applied for the study of liver and serum protein science in order to find potential biomarkers.

英文关键词: functionalized magnetic nanoparticle;proteomics;LC-MS;chromatography-based separation;sample pretreatment

成为VIP会员查看完整内容
0

相关内容

神经结构搜索的研究进展综述
专知会员服务
35+阅读 · 2022年1月12日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
13+阅读 · 2020年10月19日
小贴士
相关VIP内容
神经结构搜索的研究进展综述
专知会员服务
35+阅读 · 2022年1月12日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员