所谓蛋白质三级结构,可以简单地理解成构成蛋白质的所有原子的空间坐标。蛋白质的三级结构可以从其残基间的距离精确地重建;就好比知道教室里同学们两两之间的欧式距离,就能确定出每位同学的平面坐标(在考虑旋转、平移、镜像等变换下是唯一的),残基共进化已经成为估计残基间距离的主要原则。大多数现有的残基共进化分析方法采用间接策略,即从目标蛋白质的多重序列比对(MSA)中提取一些手工的特征,比如协方差矩阵,然后利用这些手工提取特征推断残基共进化。
这种间接方法并不能充分利用 MSA 所携带的信息,从而导致相当大的信息丢失和残差距离估计不准。在这里,我们发布了一个端到端的深度学习框架(称为 CopulaNet) ,直接从MSA学习残基共进化。
研究结果表明,CopulaNet 能够有效地预测蛋白质三级结构。对于31个自由建模 CASP 13域中的24个域,我们的方法比现有先进方法获得了更高的预测精度。这项研究代表了端到端预测残基间距和蛋白质三级结构的重要一步。我们期望这里提出的方法可以得到进一步发展和应用,为理解蛋白质功能提供结构信息。
论文链接:https://www.nature.com/articles/s41467-021-22869-8
预测服务器链接:http://protein.ict.ac.cn/FALCON/
预测软件源代码下载链接:http://protein.ict.ac.cn/ProFOLD/