项目名称: 用于康复评估的步态特征提取新方法
项目编号: No.51275282
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 机械、仪表工业
项目作者: 钱晋武
作者单位: 上海大学
项目金额: 80万元
中文摘要: 步态运动学参数的精确评估是临床需求明确但学术技术界没有很好解决的问题。本课题将通过研究基于标志点和运动捕捉仪的步态参数测量技术、研究脚部标志点和C-空间与关节空间映射方法相结合的步态关节参数获取新方法,得到精确描述步态特征的多维时间序列。利用临床评估和现有医学诊断技术指标的数学表征和步态相关性研究,得到神经疾病与步态特征的关联测度。通过研究经验模态分解、样本熵、功率谱及其改进手段在步态时序特征分析中的应用、发现步态时序中性状变化的关键阈值对临床疾病显著性指向的影响。研究结果将为步行康复和给药评估提供解决方案,并发展出计算机辅助步态评估和检测系统。此外,还为神经疾病(如帕金森症)的早期筛查和检测准备预研基础。为系统开展高水平的复杂医工学研究和推进"机制转变的早期预警"方面的研究准备学术和技术基础。
中文关键词: 步态;运动捕捉;康复评估;Tau;小波
英文摘要: Accurate evaluation of gait kinematical parameters remains unsolved both in the academic and technological fields, although being a clear clinical requirement. An in-depth research will be carried out on gait features multi-dimensional time series, through the studying of measurement techniques of gait parameters obtained by a motion capture markers system. A new approach for acquiring gait joint parameters from markers placed on feet and from the C-space to joint space mapping method will be explored. Relative measure of nervous diseases and gait features will be researched by conducting clinical evaluation and mathematical calculus on the basis of existing technical indexes of medical diagnosis. The research will try to quantify the effects of critical threshold of characters variation in gait time sequence of clinical disease indicators. The research includes empirical mode decomposition, sample entropy, power spectrum and many more new methods applied in gait timing features analysis . The outcome of this study may provide solutions for gait rehabilitation and administration(?) evaluation and be the foundation for a gait detection and assessment system. In addition, this study may contribute not only to a basis for a pre-research on nervous diseases early screening and detection, such as Parkinson disea
英文关键词: Gait;Motion capture;Rehabilitation evaluation;Tau;Wavelet