项目名称: 具有原子精度边界的扶手型石墨烯纳米带的扫描隧道显微镜研究

项目编号: No.11304398

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 黄寒

作者单位: 中南大学

项目金额: 30万元

中文摘要: 石墨烯是由单层碳原子按蜂窝状排列而成的二维晶体,具有很多奇异的性质和巨大的应用前景。如何使石墨烯由半金属转变成半导体,是当今学术界关注的热点之一。理论计算预言,将石墨烯变成一维带状纳米结构是一种有效的方法。在本项目中,我们将选用带有特定官能团的有机小分子DBBA,利用金属表面的催化作用和分子之间的聚合作用,原位合成具有原子精度边界的扶手型石墨烯纳米带;我们将以研究其生长机理为出发点,争取实现不同长度和宽度的石墨烯纳米带的可控生长;并用低温扫描隧道显微镜等技术对其原子结构以及相应的电子结构进行研究;我们将尝试构造硅烯-石墨烯的纳米异质结,并在原子尺度上研究这两种单原子层晶体的界面效应。我们希望通过这些研究可以进一步了解石墨烯纳米带的物性并为拓展石墨烯的应用提供深入的途径和可能的技术手段。

中文关键词: 石墨烯纳米结构;自组装;界面修饰;理论计算;扫描隧道显微镜

英文摘要: Graphene, a single sheet of sp2-bonded carbon atoms in a honeycomb lattice having many exotic properties, has attracted great interests in both academia and industry. Band gap engineering in graphene is essential in its application in electronic devices. Theoretically, a promising way to bandgap opening is to reduce the physical size of graphene down to nanometer scale. In this project, small organic molecules with special functional groups are used to synthesize graphene nanosribbons (GNRs) with pre-defined atomic precise edges via surface-assisted polymerization and dehydrogenation. Using low temperature scanning tunnelling microscopy, we will investigate the underlying mechanism of the formation of GNRs to controllably synthesize GNRs in different size. The structural properties and corresponding electronic properties of the grown GNRs will be studied.We will attempt to build Silicene-GNRs nano heterojunctions on Ag(111) to investigate the interface between them at atomic scale. We hope the proposed investigations will help to understand the growth and electronic properties of GNRs. We also hope our researches will provide possible avenue for industrial application of graphene in the future.

英文关键词: graphene nanoribbon;self assembly;interface modification;DFT;STM

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】注意力机制的快速蒙特卡罗近似
专知会员服务
20+阅读 · 2022年2月5日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
50+阅读 · 2021年6月2日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
专知会员服务
29+阅读 · 2020年8月8日
微信是一切流量的尽头
人人都是产品经理
0+阅读 · 2022年2月21日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关VIP内容
【AAAI2022】注意力机制的快速蒙特卡罗近似
专知会员服务
20+阅读 · 2022年2月5日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
50+阅读 · 2021年6月2日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
专知会员服务
29+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员