项目名称: 超微细粉尘荷电凝并的关键技术研究

项目编号: No.51278229

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 建筑科学

项目作者: 依成武

作者单位: 江苏大学

项目金额: 72万元

中文摘要: 现有电除尘器放电电场中产生离子浓度低(106~107/cm3),超微细烟尘颗粒荷电凝并几率低下。导致烟尘颗粒驱进速度低(3cm/s~20cm/s),造成超微细烟尘颗粒捕集效率低(一般<90%)的问题。采用双旋涡型收尘极板高效电除尘技术,利用提高带电粒子动量方法,可使离子有效摆脱电场束缚,采用双涡旋型收尘极板提高荷电凝并几率,有望解决电收尘器存在问题。课题拟以新型电除尘器为研究对象,以提高超微细烟尘颗粒捕集效率为目的。建立电晕放电离子输运物理模型,揭示带电粒子动量等物理参量对离子浓度影响规律;研究双旋涡型收尘极板结构参数等物理参量与旋涡涡量的关系,揭示适合电凝并的收尘极板设计规律,构建双涡旋型收尘极板形成旋涡荷电凝并机制;建立电除尘过程中的荷电凝并模型和粒子输运方程,揭示烟尘颗粒在除尘器内运动规律。通过理论和试验研究,确定新型电除尘器最佳设计参数。为提高超微细烟尘颗粒捕集效率提供有效方法。

中文关键词: 电除尘器;双涡旋型收尘极板;超微细粉尘;荷电凝并;离子输运

英文摘要: The ionic concentration (106~107/cm3) in the ESP applied electrical field and charged agglomeration rate of ultra-fine particles is relatively low. It results in the ultra-fine dust particles low drift velocity (3cm/s~20cm/s) and collection efficiency is always less than 90%. In order to escape the electric field constraint,double-vortex-type high efficiency plate ESP technology is applied to increase the charging particles momentum. Thereby increasing the rate of ion transport in ion concentration can be increased more than two orders of magnitude.Ion concentration can be increased from the current 106/cm3 ~ 107/cm3 to 108~109/cm3.Current particles drift velocity can be increased from 3cm/s~20cm/s to 20cm/s~200cm/s, average velocity of the flue gas in ESP is expected to 2~3m/s.It is seemed that double-vortex-type high efficiency plate ESP can increase the charged agglomeration to solve the present problems. A new type ESP is designed as the research object aimed at increasing the ultra-fine dust particles collection efficiency. To reveal the law of physic parameters (such as particles momentum etc.) effects on the ionic concentration, the physical transport mode of corona discharge is developed. For the charging and agglomeration mechanism of the vorticity, the relation between structural parameters of double-v

英文关键词: Electrostatic precipitator;Double vortex type dust collecting plate;Ultrafine dust;Charge coagulation;Ion transport

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
116+阅读 · 2022年4月8日
数据中心传感器技术应用 白皮书
专知会员服务
38+阅读 · 2021年11月13日
专知会员服务
13+阅读 · 2021年9月12日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
38+阅读 · 2021年3月3日
专知会员服务
13+阅读 · 2020年12月12日
工业人工智能的关键技术及其在预测性维护中的应用现状
冬奥战袍中蕴藏的科技元素,人才竞争是关键
学术头条
0+阅读 · 2022年2月15日
你是在创新,还是在瞎搞?
人人都是产品经理
0+阅读 · 2022年1月23日
已删除
将门创投
12+阅读 · 2019年7月1日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Stateful Greybox Fuzzing
Arxiv
0+阅读 · 2022年5月16日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
0+阅读 · 2022年5月13日
Arxiv
0+阅读 · 2022年5月12日
Fall detection using multimodal data
Arxiv
2+阅读 · 2022年5月12日
Arxiv
0+阅读 · 2022年5月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
135+阅读 · 2018年10月8日
小贴士
相关主题
相关VIP内容
军事知识图谱构建技术
专知会员服务
116+阅读 · 2022年4月8日
数据中心传感器技术应用 白皮书
专知会员服务
38+阅读 · 2021年11月13日
专知会员服务
13+阅读 · 2021年9月12日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
38+阅读 · 2021年3月3日
专知会员服务
13+阅读 · 2020年12月12日
工业人工智能的关键技术及其在预测性维护中的应用现状
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Stateful Greybox Fuzzing
Arxiv
0+阅读 · 2022年5月16日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
0+阅读 · 2022年5月13日
Arxiv
0+阅读 · 2022年5月12日
Fall detection using multimodal data
Arxiv
2+阅读 · 2022年5月12日
Arxiv
0+阅读 · 2022年5月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
135+阅读 · 2018年10月8日
微信扫码咨询专知VIP会员