项目名称: 遗传聚类算法的系统性改善策略

项目编号: No.61203288

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 盛伟国

作者单位: 浙江工业大学

项目金额: 25万元

中文摘要: 聚类分析是一个极具挑战性的研究课题,遗传算法已成为研究该课题的重要方法。然而,现有基于遗传算法的聚类分析存在参数设置难、速度慢、局部收敛以及难以快速可靠聚类等诸多不足。本项目致力于研究一系列方法、原理和技术,旨在系统性、整体性改善遗传聚类算法。具体研究将从限制现有算法性能的四个关键问题展开。首先,结合演化自适应和自适应参数设置技术来研究有效的参数设置方法,以解决参数设置难问题。其次,提出基于多局部搜索的遗传聚类分析,来提升算法速度。再次,设计基于健壮群体多样性指标的自适应小生境技术,用于结合遗传算法对聚类问题的复杂、多模态解空间进行有效搜索,防止局部收敛。最后,研究确定一个合适的权和聚类函数,用以快速得到可靠聚类结果。本项目将实现快速、有效、可靠且具参数自调整能力的自动聚类分析。研究成果可广泛应用于科学研究和工程设计,具有重要的理论意义和应用价值。

中文关键词: 聚类分析;遗传算法;混合遗传算法;参数设置;小生境技术

英文摘要: Clustering is inherently a highly challenging research problem, and genetic algorithm has become an important tool to approach such a problem. However, existing genetic algorithm based clustering methods suffered from a variety of inadequacies, such as difficulty of setting appropriate parameter values, inefficiency, premature convergence and difficulty in delivering reliable results, etc. This project studies a series of methods, principles and techniques, aiming at systematically improving genetic clustering algorithms. Specifically, the project will focus upon four key issues which greatly impact performance of the algorithm to study effective solutions. Firstly, for the issue of parameter setting, the project proposes to study effective methods by integrating the adaptive and self-adaptive parameter setting techniques. Secondly, for the issue of convergence speed, we propose multi-local search based hybrid genetic clustering algorithm. Thirdly, for the issue of premature convergence, the project devises a robust population diversity index based adaptive niching methods which will be integrated into the genetic algorithm to effectively explore complex, multi-model search space of the partitional clustering problems. Finally, for the issue of results' reliability, we propose to determine an appropriate weighte

英文关键词: Cluster analysis;Genetic algorithm;Hybrid genetic algorithm;Parameter control;Niching method

成为VIP会员查看完整内容
0

相关内容

聚类分析(Clustering)是无监督学习的一种,目的是将一组数据点分类,但没有训练数据集,区别于有监督的分类分析(Classification)。
基于深度学习的图像目标检测算法综述
专知会员服务
97+阅读 · 2022年4月15日
专知会员服务
55+阅读 · 2021年9月18日
专知会员服务
28+阅读 · 2021年9月13日
专知会员服务
28+阅读 · 2021年6月7日
专知会员服务
14+阅读 · 2021年5月12日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
专知会员服务
77+阅读 · 2020年12月6日
【Java实现遗传算法】162页pdf,Genetic Algorithms in Java Basics
专知会员服务
43+阅读 · 2020年7月19日
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
PyTorch | 优化神经网络训练的17种方法
极市平台
3+阅读 · 2021年12月30日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
不断发展的强化学习算法
TensorFlow
2+阅读 · 2021年5月20日
基于二进制哈希编码快速学习的快速图像检索
极市平台
12+阅读 · 2018年5月17日
基于深度学习的目标检测算法综述
AI研习社
14+阅读 · 2018年4月25日
深度学习中的五大正则化方法和七大优化策略
全球人工智能
11+阅读 · 2017年12月25日
有没有必要把机器学习算法自己实现一遍?
AI研习社
12+阅读 · 2017年11月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
基于深度学习的图像目标检测算法综述
专知会员服务
97+阅读 · 2022年4月15日
专知会员服务
55+阅读 · 2021年9月18日
专知会员服务
28+阅读 · 2021年9月13日
专知会员服务
28+阅读 · 2021年6月7日
专知会员服务
14+阅读 · 2021年5月12日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
专知会员服务
77+阅读 · 2020年12月6日
【Java实现遗传算法】162页pdf,Genetic Algorithms in Java Basics
专知会员服务
43+阅读 · 2020年7月19日
相关资讯
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
PyTorch | 优化神经网络训练的17种方法
极市平台
3+阅读 · 2021年12月30日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
不断发展的强化学习算法
TensorFlow
2+阅读 · 2021年5月20日
基于二进制哈希编码快速学习的快速图像检索
极市平台
12+阅读 · 2018年5月17日
基于深度学习的目标检测算法综述
AI研习社
14+阅读 · 2018年4月25日
深度学习中的五大正则化方法和七大优化策略
全球人工智能
11+阅读 · 2017年12月25日
有没有必要把机器学习算法自己实现一遍?
AI研习社
12+阅读 · 2017年11月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员