项目名称: 微纳尺度下固液界面流体阻力多因素耦合影响机理及规律的研究

项目编号: No.51475118

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 机械、仪表工业

项目作者: 赵学增

作者单位: 哈尔滨工业大学

项目金额: 84万元

中文摘要: 基于微纳米技术的微纳流体系统的发展,使其在机械、生物、化学、医学以及生物医学等领域取得了引人瞩目的业绩。目前微纳米尺度下的流体阻力的控制已成为制约微纳流体系统发展的关键因素之一,对流体阻力的形成机理和影响因素的研究具有重要的理论意义和实用价值。本课题首先利用理论分析和实验相结合的方法研究固液界面上纳米气泡影响边界滑移的机理,得到纳米气泡对液体流动阻力的影响规律;然后以固液气三态耦合理论为基础,分析表面电荷、电粘度效应、边界滑移和纳米气泡之间耦合作用机理,建立一、二维微纳通道内的流速场数学模型,得到微纳尺度下固液界面流体阻力多因素耦合影响机理及规律。利用改造后具有外加电场功能的AFM测量固液界面纳米气泡特征参数、表面电荷密度、边界滑移长度,同时利用微流量计测量微纳管道流量流速,验证理论分析结果的正确性。最后探索一种基于改变表面电荷密度实现控制微纳流体系统内流动阻力的方法。

中文关键词: 微流体系统;纳米摩擦学;表面电荷;边界滑移;纳米气泡

英文摘要: Micro/Nanofluidic systems, which are developed based on the micro/ nano technology, obtained remarkable achievements in mechanical, biological, chemical and biomedical applications. The control of the drag of fluid flow in micro/ nano scale is one of the key factors for the development of Micro/nanofluidic systems. The study of the formation mechanism and influence factors of the drag of fluid flow has important theoretical and practical value. This research firstly studies the effect of nanobubbles on the boundary slip at the interface of solid and liquid based on theoretical analysis and experimental methods, and obtains the effect of nanobubbles on the drag of liquid flow. Secondly, the co-influence of surface charge, electroviscosity, boundary slip and nanobubbles are investigated based on the solid, liquid, gas coupling theory, and one-dimensional and two-dimensional mathematical models of the velocity field within the micro/ nano scale channels are established to obtain the co-effects on the drag of fluid flow in micro/ nano scale. Then the characteristic parameters of nanobubbles, surface charge density and slip length are measured using an modified AFM which can applies electric filed to the experimental system, at the meantime, the flow rate of micro/nano pipeline flow is measured by using micro-flowmeter to verify the theoretical analysis. Finally a method which can control the drag of fluid flow in micro/nanofluidic system by changing the surface charge density is explored.

英文关键词: micro fluidic system;nanotribology;surface charge;boundary slip;nanobubbles

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
基于深度学习的交互式问答研究综述
专知会员服务
38+阅读 · 2021年11月30日
【CIKM2021】基于等效共享记忆研究的神经会话生成模型
专知会员服务
9+阅读 · 2021年11月19日
专知会员服务
68+阅读 · 2021年10月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
97+阅读 · 2021年6月23日
数据价值化与数据要素市场发展报告(2021年),53页pdf
专知会员服务
82+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
超级用户,才是企业未来发展的“核动力”
人人都是产品经理
0+阅读 · 2022年1月3日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月22日
小贴士
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
基于深度学习的交互式问答研究综述
专知会员服务
38+阅读 · 2021年11月30日
【CIKM2021】基于等效共享记忆研究的神经会话生成模型
专知会员服务
9+阅读 · 2021年11月19日
专知会员服务
68+阅读 · 2021年10月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
97+阅读 · 2021年6月23日
数据价值化与数据要素市场发展报告(2021年),53页pdf
专知会员服务
82+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员