项目名称: 基于可调势垒的高密度硅纳米结构的低温构筑与发光特性
项目编号: No.60806046
项目类型: 青年科学基金项目
立项/批准年度: 2009
项目学科: 化学工业
项目作者: 黄锐
作者单位: 韩山师范学院
项目金额: 20万元
中文摘要: 硅基材料的高效发光是是实现硅基单片光电集成的关键所在。本课题完成了基于高密度纳米硅发光材料的制备、微结构和发光特性的研究,在此基础上构建发光器件,研究其电致发光特性和载流子输运机制,并开拓了新的研究内容,对a-SiNx和ZnO/a-SiNx:H核壳结构纳米线的制备与发光特性进行了研究。三年来,得到了如下一些主要成果:1)发展了一种低温(250℃#65289;条件下构建超高密度(>1012/cm2)、小尺寸(≤ nm)、均匀分布的硅纳米结构发光材料的新途径;2)观测到来自高密度硅纳米结构的强可见光致发光,以此构建电致发光原型器件,在室温下获得强的电致白光发射,并阐明其中的发光机制;3)构筑富硅氮化硅/富氮氮化硅多层膜,结合激光辐照,获得三维限制的纳米硅量子点。在室温下,观测到了光致和电致可见光发射现象。通过增大激光辐照能量密度有效地提高纳米硅密度,进一步提高电致发光效率,并降低器件的开启电压;4)构建基于硅/氮氧化硅多层膜结构的发光器件,通过改变垒层的Si、N、O组分,调制其势垒高度,将器件的电致发光效率提高一个数量级以上。项目完成了预期目标,现已发表学术论文12篇, 其中SCI收录10篇。
中文关键词: 硅纳米结构;光致发光;电致发光;多层膜结构
英文摘要: The realization of high luminescence efficiency is of great significance for the development of Si-based photonic and the monolithic integration of optoelectronic devices on mass-produced Si chips. This project, which investigated fabrication, microstructure, luminescence properties and carrier transport mechanism of dense Si nanostructure-based materials, has been completed in time. Some new research contents, including the fabrication and luminescence properties from a-SiNx and ZnO-core/a-SiNx:H-shell nanowires, have also been added to this project. Main results we obtained are described as follows: 1) developed a new method for fabricating dense(>1012/cm2)Si nanostructures with diameter less than 3 nm. 2) obtained strong photoluminescence as well as electroluminescence from dense Si nanostructures system, and revealed the luminescence mechanisms. 3) fabricated three-dimensional constrained Si quantum dots by using Si-rich SiN/ N-rich SiN multilayer structure followed by subsequently laser crystallization of ultrathin amorphous Si-rich SiN sublayers, which exhibit strong light emission under both optical and electrical excitations. Luminescence efficiency and the turn-on voltage for electroluminescence were effectively improved by enhancing the density of Si nanostructures. 4) fabricated light-emitting devices based on Si/SiOxNy multilayers. The different bandgaps of the SiOxNy barrier layers was obtained by controlling the content of Si, N and O. The luminescence efficiency from the devices was significantly enhanced by more than one order of magnitude by modulating the bandgap of the SiOxNy barrier layers. The desired objectives of the project are completed. So far, 12 papers have been published. 10 published papers were indexed by SCI.
英文关键词: i nanostructure; photolumiminescence; electroluminescence; multilayer structure