Finding all maximal $k$-plexes on networks is a fundamental research problem in graph analysis due to many important applications, such as community detection, biological graph analysis, and so on. A $k$-plex is a subgraph in which every vertex is adjacent to all but at most $k$ vertices within the subgraph. In this paper, we study the problem of enumerating all large maximal $k$-plexes of a graph and develop several new and efficient techniques to solve the problem. Specifically, we first propose several novel upper-bounding techniques to prune unnecessary computations during the enumeration procedure. We show that the proposed upper bounds can be computed in linear time. Then, we develop a new branch-and-bound algorithm with a carefully-designed pivot re-selection strategy to enumerate all $k$-plexes, which outputs all $k$-plexes in $O(n^2\gamma_k^n)$ time theoretically, where $n$ is the number of vertices of the graph and $\gamma_k$ is strictly smaller than 2. In addition, a parallel version of the proposed algorithm is further developed to scale up to process large real-world graphs. Finally, extensive experimental results show that the proposed sequential algorithm can achieve up to $2\times$ to $100\times$ speedup over the state-of-the-art sequential algorithms on most benchmark graphs. The results also demonstrate the high scalability of the proposed parallel algorithm. For example, on a large real-world graph with more than 200 million edges, our parallel algorithm can finish the computation within two minutes, while the state-of-the-art parallel algorithm cannot terminate within 24 hours.
翻译:在网络上查找所有最大值$-最低值$-最低值美元-最低值-最低值-最低值-在图解分析中是一个根本性的研究问题。由于社区检测、生物图分析等许多重要应用,在图形分析中,这是一个根本性的研究问题。 美元-最低值-最低值-最低值-网络上的所有最大值-最低值-最低值-最低值-最低值-最低值-在图解分析中,由于社区检测、生物图分析等许多重要应用, 图形分析是一个根本性的图形分析中的根本性问题。 我们显示,提议的上值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最高值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最低值-最高值-最高值-最高值-最低值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高值-最高-最高-最高-最高-最低-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高-最高