项目名称: 集成多种组学数据构建复杂疾病致病通路的算法设计及应用
项目编号: No.61273228
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 陈勇
作者单位: 中国科学院生物物理研究所
项目金额: 85万元
中文摘要: 人类复杂疾病致病通路的系统构建和分析是系统生物学和医学领域中一个具有挑战性的、基础性的研究课题。解决这个问题的主要困难是缺乏融合多种生物数据的有效算法和当前各种生物数据的不完备性。本项目将首先利用回归分析和网络最大流等方法,设计构建致病通路的多源信息融合算法,然后集成基因组、蛋白质组等多种组学数据系统构建II型糖尿病的致病通路,并进一步以饱和脂肪酸导致的胰岛素阻抗过程为重点,检测不同脂肪酸浓度下的基因表达谱,研究该致病通路中由不同环境信号调控的功能子网络(功能模块性)。这项研究利用多源数据融合能够弥补当前单一数据源的片面性和粗糙性,提高预测致病通路精度。对致病通路的信号模块性分析可深层次揭示致病机理,发现潜在药物基因靶点。预期研究成果将转化为应用软件和II型糖尿病的致病通路数据库,为该疾病的研究提供实用的工具和数据,设计的信息融合算法还可应用到合成生物学和药物设计等问题中。
中文关键词: 组学数据;数据整合;复杂疾病;致病通路;网络优化
英文摘要: The construction and analysis of complex disease pathway is a foundmental and challenging problem in both system biology and medicine. The main difficult comes from the uncompletement of data and absence of effective congstruction algorithm. The proposal firstly designs the construction algorithms by using information flow method and linear regression and so on. It then systemically constructs disease pathway of type II diabetes by integrating multi omics data such as genomics, proteomics and transcriptomics. By measuring the transcriptome data of skeletal muscle on different fatty acid cultures, it further investigates module of the insulin resistance process caused by saturated fatty acid. The precision of constructing disease pathway will be improved by integrating multi omics data which can effectively resolve unilateralism and roughness. The deep analysis of module can further investigate the mechanisms of type II diabetes and predict new drug targetting genes. Software of designed algorithms and the database of disease pathway of type II diabetes will be finished for further researches. The algoritms can also be applied in synthetic biology and network drugs design.
英文关键词: omics data;data integration;complex disease;disease pathway;network optimization