项目名称: 半导体纳米材料相干光学特性的实验研究

项目编号: No.91321105

项目类型: 重大研究计划

立项/批准年度: 2014

项目学科: 物理学I

项目作者: 王晓勇

作者单位: 南京大学

项目金额: 55万元

中文摘要: 能够对两能级量子系统产生的单光子进行处理和控制,来实现长距离传输二进制编码的保密数据是实现未来量子信息处理和通讯的必要条件。与自然原子相比,以外延生长量子点、胶体量子点和单壁碳纳米管为代表的半导体纳米材料具有较大的光学跃迁偶极矩,而且其形状、尺寸、密度、位置和组成等参数在生长过程中都能够得到有效的控制,从而达到灵活地调节其电光特性等目的。本项目计划对上述这三种半导体纳米材料在单分子精度进行量子相干特性的测量和单光子器件的研制。在外延生长量子点方面,将结合微腔量子电动力学来观察到更多新奇的量子相干特性;在胶体量子点方面,争取首次实现量子干涉和Rabi振荡这些基本量子相干特性的测量;在单壁碳纳米管方面,通过单光子发射的测量,来解决其在室温条件下是否为两能级量子发光体这个问题。项目完成时,力争发表若干具有重要国际影响的学术论文,建立具有国际先进水平的半导体纳米材料光学特性研究团队。

中文关键词: 单光子发射;相干光学特性;量子点;;

英文摘要: The abibity of controlling and processing single photons emitted from a two-level quantum system to realize long distance transmission of encrypted binary codes is one of the main requirements for future applications of quantum information processing and communication. Compared to natural atoms, semiconducting nanomaterials of self-assembled quantum dots, colloidal quantum dots and single-walled carbon nanotubes have much larger optical transition dipole moments. Moreover, their structural properties such as shape, size, density, position and composition can be effectively controlled, which is important for the purpose of flexibly adjusting their electronic and optical properties. In this project, we plan to study the quantum coherent properties of the above three material systems on the single molecule level and promote their device applications in single photon sources. For self-assembled quantum dots, we will study their microcavity quantum electrodynamics to observe more novel quantum coherent properties; for colloidal quantum dots, we will try to measure their basic quantum coherent properties of quantum interference and Rabi oscillations for the first time; for single-walled carbon nanotubes, we will measure their single photon emissions to solve the long-existing problem of whether they are two-level quan

英文关键词: single-photon emission;coherent optical property;quantum dot;;

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
36+阅读 · 2021年7月17日
【AAAI2021最佳论文】多智能体学习中的探索 - 利用
专知会员服务
35+阅读 · 2021年2月6日
专知会员服务
46+阅读 · 2020年12月20日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
专知会员服务
21+阅读 · 2020年9月14日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
18+阅读 · 2019年1月16日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
11+阅读 · 2018年5月13日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员