项目名称: 原位QXAFS方法研究CO2加氢催化制甲醇过程

项目编号: No.11275258

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 姜政

作者单位: 中国科学院上海应用物理研究所

项目金额: 90万元

中文摘要: 近年来,随着全球气候变暖问题的日益严重和化石燃料的逐渐枯竭,如何实现CO2有效利用越来越受到人们的关注。诺贝尔化学奖得主、著名有机化学家George A. Olah最近提出了"甲醇经济" 可作为应对油气时代过后能源问题的一条解决途径。虽然从CO2加氢合成甲醇、高碳醇、汽油等产品入手,能够有效地提高CO2的利用效率。但是,研究发现,把传统共沉淀方法制备的工业用Cu基催化剂 用于CO2加氢合成甲醇反应时,甲醇活性和选择性都非常低。另外,由于反应机理不明确,对于合成甲醇催化剂的活性中心到底是Cu,Cu+,还是Cu-Cu+ 就一直存在着争议。本项目拟建立秒级QXAFS方法平台,结合原位结构表征技术并辅以催化性能评价和反应动力学研究,力争明确Cu基催化剂在CO2合成甲醇过程中的活性中心及其原子、电子结构变化对催化性能的影响,进而明确反应机理,对今后的工业应用提出理论依据。

中文关键词: 原位;QXAFS;甲醇;CO2;

英文摘要: The application of CO2 attracted more and more attention with the increasingly serious problem of global warming and the gradual depletion of fossil fuels in recent years.The well-know organic chemist, NoBel Prize Laureate in Chemistry, George A.Olah descibed a " methanol economy" which is a new idea as a solution to this big challage.The efficiecy of CO2 using is improved by syntheszing methanol , C5+ alcohols and gasoil products. However, it is shown that the activity and selectivity of Cu based catalyst by traditional industrial co-precipitation method are very poor for CO2 hydrogenation to methanol.Additionally, the mechanism for methanol synthesis is not clear. It is a huge struggle on which one is the active centor of the catalyst,Cu , Cu+ or Cu-Cu+. We will build a second level QXAFS platform besed on the SSRF XAFS beamline. And we use the in-situ QXAFS combine with in-situ XRD, SAXS and other conventional way to charaterize the structure of Cu based catalyst. We try to get the relationship of the structure , catalytic performace and also the reaction kinetics, and strive to clear the active center of the Cu based catalyst in methanol synthesis process from CO2 hydrogenation. Finally, we will clear the reaction mechanism, and even the guiding for future industrial applications.

英文关键词: in-situ;QXAFS;methanol;CO2;

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
103+阅读 · 2021年4月7日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
图神经网络推理,27页ppt精炼讲解
专知会员服务
115+阅读 · 2020年4月24日
全新量子充电技术:最快9秒充满一辆电动汽车?
他们在利用你的单身赚钱
人人都是产品经理
0+阅读 · 2022年1月30日
自动化所平行驾驶技术“闯入”极寒矿区
中国科学院自动化研究所
1+阅读 · 2021年6月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
14+阅读 · 2020年12月10日
小贴士
相关主题
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
103+阅读 · 2021年4月7日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
图神经网络推理,27页ppt精炼讲解
专知会员服务
115+阅读 · 2020年4月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员