项目名称: 低损耗、高带宽太赫兹聚合物光子晶体光纤理论与实验研究

项目编号: No.11504416

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 孔德鹏

作者单位: 中国科学院西安光学精密机械研究所

项目金额: 23万元

中文摘要: 太赫兹系统不能实现轻量化、紧凑化和便携化的最大障碍是缺乏柔性、低损耗、高带宽的太赫兹光纤器件。空芯带隙型光子晶体光纤是基于光子晶体理论的一种二维光传输介质。最新研究发现,合理的带隙型光子晶体光纤结构有望突破传统的窄带隙限制,在红外波段实现低损耗、高宽带传输。但其在太赫兹波段的研究还未见报道。申请人在多年从事聚合物微结构光纤研究取得的系列研究成果之上,提出设计和制造一种具有大空气芯、高占空比(超过90%)空气孔包层的带隙型光子晶体太赫兹光纤。拟从理论和实验两方面研究影响光纤传输特性的物理机制。通过合理的光纤结构设计加强对太赫兹波的束缚能力、消除表面模与传导模的交叉干扰;通过自创的特殊工艺(空气孔微气压分控技术)实现对占空比和光纤结构的控制,最终实现太赫兹波的高效传输。本研究具有重要的理论研究意义和实际应用价值,有望从根本上实现太赫兹波的柔性、高效传输,使太赫兹系统彻底瘦身。

中文关键词: 太赫兹波导;微结构光纤;空芯光子带隙光纤;聚合物光纤

英文摘要: The terahertz systems were hard to be light, compact and portable on account of the lack of high quality terahertz fibers with the performance of flexibility, low-loss and high broad-band. Hollow core photonic bandgap fiber (HC-PBGF) is a two dimensional optical transmission medium based on the theory of photonic crystal. As the recent study shows, the reasonable structure of HC-PBGF is expected to break through the traditional limitations of the band gap and achieve the low-loss, broad-band transmission on the infrared wavelengths. However, the relative research report in terahertz wave has not been found. In this application, a large hollow core and high air filling factor HC-PBGF is presented, based on the research foundation of polymer microstructure optical fibers in our group for many years. The physical mechanism of factors that affect the fiber’s transmission characteristics will be theoretically and experimentally studied. Rational designed fiber structure can limit terahertz wave to transmit in the air core and eliminate the cross interference of surface and conduction modes. Our own technology of controlling the gas pressure of holes respectively is used to get the high air filling factor and excellent fiber structure. And then the high efficient transmission for terahertz wave can be achieved. This is a significantly important study both in terahertz waveguide theory research and practical applications. By which it is expected to settle the problem that let the terahertz wave efficiently transmit in flexible fibers, and the terahertz systems can lose weight.

英文关键词: terahertz waveguides;microstructured fibers;hollow-core photonic bandgap fibers;polymer fibers

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
12+阅读 · 2021年9月13日
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
专知会员服务
41+阅读 · 2021年2月8日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
12+阅读 · 2021年9月13日
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
专知会员服务
41+阅读 · 2021年2月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员