项目名称: 面向大规模农田生境监测的无线传感器网络信号传播特性与供电策略研究
项目编号: No.61271257
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 无线电电子学、电信技术
项目作者: 吴华瑞
作者单位: 北京市农林科学院
项目金额: 80万元
中文摘要: 在精准农业应用中,基于无线传感器网络的大规模农田生境监测系统存在野外监测周期长、能耗大、部署复杂等特点,高能效低延迟的泛洪传播易受到农作物生长高度、密度、营养成分、生长周期和农田环境等因素影响,无线传感器网络节点故障、能耗空洞、网络连通性及覆盖范围遭受冲击等现象严重。由于失效节点造成路径断路甚至整个网络瘫痪,特别是频繁应用的节点能量快速消耗,很容易导致网络处于死锁状态。针对以上问题,研究大规模农田渐变复杂环境信号传播环境特性及信道模型,为无线传感器可靠高效地数据传输和实用的节点部署策略提供技术支撑;考虑结合能源再生的农田无线传感器网络供电策略,有助于降低生境监测网络成本和延长网络生命周期;建立基于太阳能/电池供电节点能量均衡与分布式数据压缩的性能优化方案和分布式性能推测算法,为无线传感器网络在优质、高效的现代农业生产中普及应用提供针对性理论方法,提高大规模农田生境监测系统的精确化管控水平。
中文关键词: 多尺度信道模型;混合供电策略;能耗感知路由;数据感知融合;性能优化推测
英文摘要: Applied in the precision agriculture, the habitat monitoring system based on wireless sensor network of the large-scale farmland has many characteristics, such as the long period of field monitoring, high energy consumption, difficult maintenance, complex deployment and other issues. Flooding with high efficiency and low delay of wireless sensor network is easily affected by crop growth height, density, nutrition, growth cycle and farmland environment and other factors, some phenomena become more and more serious, such as the node fault, energy cavity, network connectivity and intrusion of coverage area. The invalid node may cause the failure of a path or even crash of the entire network. Especially because the nodes with frequent use cause fast consumption of the energy, it is easy to bring the network in the dead lock state. To solve the above problems and provide technical support for reliable and efficient data transmission of wireless sensors and applied node deployment scheme, the signal propagation characteristics and channel model in the complex dynamic environment of the large-scale farmland will be studied. The power supply policy of the wireless sensor network in large-scale farmland is considered by combing the energy regeneration nodes into the network. It is helpful to reduce the cost of habitat m
英文关键词: multi-scale signal channel model;hybrid power supply strategy;energy aware routing algorithm;Data fusion;network performance optimization