项目名称: 氧化锌纳米线本征缺陷的系统研究

项目编号: No.51272232

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 王业伍

作者单位: 浙江大学

项目金额: 80万元

中文摘要: 未掺杂氧化锌通常呈现典型的n型导电特性,然而其n型载流子来源仍然众说纷纭,成为调控氧化锌导电特性的主要瓶颈之一,因此明晰其载流子来源至关重要。基于此,本项目将结合原位精细结构分析和物性测量,系统研究单根氧化锌纳米线本征缺陷。研究内容如下:利用球差校正高分辨透射电镜原位观察分析单根氧化锌纳米线本征缺陷,并结合电子能量损失谱分析其电子结构;利用微区光致发光测试单根氧化锌纳米线变温PL谱,揭示其缺陷态;制作基于单根氧化锌纳米线的场效应晶体管,在扫描电镜真空环境中测试其电性能,获得载流子浓度及迁移率等参数,并利用附属于扫描电镜的阴极射线发光谱测试单根氧化锌的CL谱。综合上述精细结构分析和物性测量结果及理论计算,揭示未掺杂氧化锌n型载流子的来源,分析难以实现氧化锌导电特性调控的物理机制,在此基础上进行氧化锌可控掺杂的探索研究。项目的实施将有助于解决氧化锌的一些基本问题,具有重要的科学意义和应用价值。

中文关键词: 本征缺陷;氧化锌;光致发光;电输运;

英文摘要: The undoped ZnO usually exhibits n-type electrical conductive property. However, the origin of the n-tpye carriers in ZnO remains controversial, which becomes the bottle-neck for controlling its electrical conductive property. As a result, it is of vital importance to understand the origin of the n-type carriers in ZnO. Based on this, this project aims to systemically study the intrinsic defects of single ZnO nanowire combining the in-situ fine structure characterization and the physical propery measurement.The specific content of this study is listed as follows: in situ observing and analyzing the intrinsic defects of single ZnO nanowire with the spherical aberration corrected high resulotion transmission electron microscope, and studying its electronic structure by the electron energy loss spectroscopy; measureing the temperature-dependent photoluminescence of single ZnO nanowire by the micro-photoluminescence spectrometer to reveal its defect states; fabricating the field-effect transitor based on single ZnO nanowire, measureing its electrical property in the vacuum environment in the scanning electron microscope to obtain the parameters like the carrier density and the mobility of the nanowire, and also performing the cathodeluminescence measurement of single ZnO nanowire with the cathodeluminescence spectro

英文关键词: native defects;ZnO;photoluminescence;electric transport;

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
82+阅读 · 2022年4月17日
【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
43+阅读 · 2021年7月6日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
24+阅读 · 2021年6月25日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
82+阅读 · 2022年4月17日
【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
43+阅读 · 2021年7月6日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员