项目名称: 弱光非线性光子学材料的缺陷设计与构筑

项目编号: No.91222111

项目类型: 重大研究计划

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 孔勇发

作者单位: 南开大学

项目金额: 100万元

中文摘要: 光子已经成为重要的能源和信息载体,广泛应用于现代科技的诸多方面。弱光非线性光子学因所需的激发光的能量低和非线性响应这两个重要特征成为光子学研究的重要分支与热点。而弱光运作下的光子学器件则具有广泛的应用前景,但材料成为弱光非线性光子学研究的瓶颈。弱光非线性往往是通过载流子的激发、迁移、俘获,在介质中形成空间电荷场,在电光效应的作用下,导致光学非线性。而空间电荷场的建立,通常是基于介质中的各种缺陷结构及电荷的输运过程。因此高性能弱光非线性光学材料的获得必然基于对材料缺陷结构的设计及构筑。项目将采取理论与实验相结合的方法,深入研究典型弱光非线性光子学材料的缺陷结构,搞清缺陷结构对空间电荷场的决定作用,构建缺陷结构与材料弱光非线性光子学性能的构效关系,进而设计与构筑弱光非线性光子学材料的缺陷结构,获得高性能的弱光非线性光子学材料,为实现晶态材料功能导向的结构设计提供新理论与材料。

中文关键词: 光子学材料;弱光非线性;缺陷;设计;构筑

英文摘要: Photon has become an important carrier of energy and information, which is widely used in many aspects of modern technologies. Weak-light nonlinear photonics has become the most important branch of photonics and the research hotspot due to its two important characteristics of low excitation energy and non-linear response. Photonic devices under low-light intensity have broader application prospects, but material is the bottleneck of weak-light nonlinear photonics. As we known, weak-light nonlinearity induced by electro-optic effect with the space charge field established by the excitation, migration and capture of light-induced carriers. And the establishment of a space charge field is usually based on the defect structures and charge transport processes in the crystals. Therefore, the fabrication of excellent weak-light nonlinear optical materials is inevitable based on the design and build of defect structure. This project will combine theoretical and experimental methods, deeply investigate the defect structure of the typical weak-light nonlinear photonic materials, show the function of defect structures on the establishment of space charge field, obtain the structure-activity relationship between the defect structure and low-light nonlinear photonic properties of materials, then design and build excellent we

英文关键词: photonic materials;low-light ninlinearity;defects;design;build

成为VIP会员查看完整内容
0

相关内容

产业元宇宙白皮书(2021-2022)
专知会员服务
113+阅读 · 2022年2月18日
【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
52+阅读 · 2021年8月17日
专知会员服务
209+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
自下而上学习容器
InfoQ
0+阅读 · 2021年12月13日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
产业元宇宙白皮书(2021-2022)
专知会员服务
113+阅读 · 2022年2月18日
【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
52+阅读 · 2021年8月17日
专知会员服务
209+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
相关资讯
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
自下而上学习容器
InfoQ
0+阅读 · 2021年12月13日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员