项目名称: 用于RF能量获取的自洽供电超低压整流器设计方法研究

项目编号: No.61306044

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 李娅妮

作者单位: 西安电子科技大学

项目金额: 25万元

中文摘要: 本项目基于纳米级CMOS工艺,研究用于RF能量获取的超低压低功耗CMOS整流器电路设计方法。根据RF能源获取技术普遍存在的挑战性问题- - 时空波动、工作频率及环境的改变等,研究整流器电路的拓扑结构,建立RF能量获取系统的高层次模型,分析其工作频率、效率、负载间的约束条件,寻求工作频率和电路尺寸、高层次模型和输出效率间的最佳关系,研究负载变化对工作频率和输出稳定性的影响机理;采用衬底调制/衬底驱动技术补偿MOS器件的阈值电压,考虑噪声、纹波等非理性因素对有源整流器性能的影响,在较宽频率范围内提高RF-DC能量获取系统的转换效率;完成多级超低压低功耗CMOS有源整流器设计,最终实现一种微瓦量级的新型高效自适应RF-DC能源获取系统,以满足人们对于绿色、节能环保、便携式消费类电子产品的迫切需求。

中文关键词: 能量获取;接口电路;超低压;高效;低功耗

英文摘要: Based on nanometer level CMOS process, the design method of an ultra-low voltage low-power CMOS active rectifier for RF energy harvesting technology is discussed in this project. According to the universal challenge problemsof RF energy harvesting technology- - temporal fluctuations, working frequency, changes in the environment,and etc, the ropologies of the different rectifier are studied, and the high-level model of the RF energy harvesting system is established, the constraint relationship among the working frequency, the efficiency and the loads is analized, aiming to seek the optimal relationship between the working frequency and device size, the the high-level model and the efficiency, to research the affect mechanism of loads variation on the working frequency and output stability. Bulk regulation or buld-driven technology is applied to compensate the threshold voltage of MOSFET. Taking into account the affect of some irrataional factors such as noise and ripple on the rectifier, the conversion efficiency of the RF-DC energy harvesting system is improved in a wide frequency range. The multistage ultra-low voltage low-power CMOS active rectifier is completed, and at last a novel μW level high-efficiency self-adaptive RF-DC energy harvesting system is realized to meet the urgent demands of people for green

英文关键词: energy harvesting;interface circuit;ultra-low voltage;high efficient;low power

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
81+阅读 · 2021年7月31日
最新《计算机体系结构和系统的机器学习》综述论文
专知会员服务
54+阅读 · 2021年2月17日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
应用知识图谱的推荐方法与系统
专知会员服务
115+阅读 · 2020年11月23日
专知会员服务
31+阅读 · 2020年9月2日
专知会员服务
80+阅读 · 2020年6月20日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
能量,尽融于心:我们要怎么看待日产 e-POWER?
ZEALER订阅号
0+阅读 · 2021年10月9日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【干货】理解深度学习中的矩阵运算
专知
12+阅读 · 2018年2月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Risk-Averse Receding Horizon Motion Planning
Arxiv
1+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
81+阅读 · 2021年7月31日
最新《计算机体系结构和系统的机器学习》综述论文
专知会员服务
54+阅读 · 2021年2月17日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
应用知识图谱的推荐方法与系统
专知会员服务
115+阅读 · 2020年11月23日
专知会员服务
31+阅读 · 2020年9月2日
专知会员服务
80+阅读 · 2020年6月20日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员