项目名称: 基于缺失属性值区间型描述的不完备数据聚类方法及应用研究
项目编号: No.61305034
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 李丹
作者单位: 大连理工大学
项目金额: 25万元
中文摘要: 在自然科学和工程技术的很多领域中,由于获取数据的限制及对数据的理解等因素,信息的不完整问题普遍存在,影响了在此基础上进行的数据分析及理解,为后续的决策分析、过程控制等造成阻碍。因此,不完备数据模糊聚类问题已成为模式识别领域的研究热点之一。针对这一问题,本项目拟围绕如下内容进行研究:(1)充分利用不完备数据集信息,给出缺失属性值的三种区间型描述,将其分析及处理限定在属性空间的合理范围内,以提高其估计的准确度;(2)将缺失属性值的区间型描述也作为聚类因素,研究不完备数据模糊聚类更为有效的求解方案;(3)将所提算法应用于缺损灰度图像的分割问题,并将整体变分模型等图像修复方法融入聚类,实现缺损图像在聚类及图像修复双重优化准则下的分割。本项目的完成将对模式识别领域的不完备数据认知及理解产生积极影响,同时有助于该理论在缺损图像分割等领域的实际应用,具有理论和应用的双重价值。
中文关键词: 模糊聚类;不完备数据;缺失属性值;区间型描述;
英文摘要: In many areas, including natural sciences and engineering technology, many databases are plaugued by the unavoidable problem of data incompleteness due to the imperfect data acquisition, incorrect data comprehension, and other factors.And the missing attribute values make it difficult for analysts to realize data analysis, and would hinder the decision analysis, process control. As a result, the problem of clustering incomplete datasets has become one of the research focuses in the field of pattern recognition. Aiming at this problem, we plan to investigate the following questions: 1) Propose three interval represionation of missing attribute values by using the information of incomplete datasets sufficiently, thus, the analysis and imputation of missing attribute values can be limited to appropriate ranges, and the accuracy can be enhanced; 2) Take the interval representation of missing attribute values as an additional clustering factor, investigate the effective approaches for clustering incomplete data; 3) Apply the proposed approaches to segmentation of gray images with corrupted blocks, and cimbine with the image inpainting approaches such as total variation model, realize the segmentation of images with corrupted blocks by considering both clustering analysis and image inpaiting. The research of the proje
英文关键词: Fuzzy Clustering;Incomplete Data;Missing Attribute Values;Interval Representation;