项目名称: 深紫外准分子激光辐照固体透明介质激发光致损伤的物理机制及应用研究

项目编号: No.61308024

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 张海波

作者单位: 中国科学院上海光学精密机械研究所

项目金额: 25万元

中文摘要: 微纳结构光学器件的加工能力对新材料和多功能微系统与微器件制造至关重要。通过强激光脉冲作用于固体透明介质,利用非线性光学作用在材料内部调制材料结构能够实现这一目标。样品中产生的永久性结构改变,例如选择性折射率变,能够用于在光学材料内部制造光子结构和三维集成光学器件。基于透明介质的光子器件的制备和性能很大程度上取决于光致损伤的机制与其调制深度的控制。目前,基于拥有较高光子能量的纳秒级深紫外准分子激光激发固体透明介质的光致损伤及其应用仍有待研究。本项目旨在发展一种基于准分子激光聚焦固体透明介质激发光致损伤的方法制备光子器件,分析深紫外激光激发固体介质光致损伤的物理机制,解决光致损伤调制深度的控制途径等关键技术问题。在此基础上,结合像散聚焦透明介质产生光丝分叉的原理,在透明固体材料内部制备Y型波导,对其进行原理验证和初步表征。

中文关键词: 深紫外激光;熔融石英;光丝效应;光致损伤;激光感生荧光

英文摘要: The ability to fabricate micro and nano-structures is crucial for the development of new materials and multifunctional micro-systems and devices. By focusing laser pulses inside the bulk of transparent materials high intensities can be achieved, which initiate nonlinear processes leading to important modifications of the structure of the materials. The induced permanent structural changes in the samples, such as the selective change of the refractive index, can be used for the fabrication of photonic structures and three-dimensional integrated optical devices inside optical materials.The fabrication and performance of photonic devices in transparent medium depend on laser-induced damage mechanism and controll of modulation depth. Howerever, mechanism and application of laser-induced damages in transparent solids focusing by deep ultravoilet (DUV) excimer lasers characterized with high photonic energy are reported less.In order to develop a photonic devices fabracation method in transparent solids induced by excimer lasers, understand the mechanisms of the laser-induced damages irradiated by DUV lasers pulses, and invesgate contrlling methods of laser-induced damages modulation depth,the project is proposed. Furthermore, based on filamentation branching in transparent mediums by astigmatically focused laser pulse

英文关键词: deep ultraviolet lasers;fused silica;filamentation;laser-induced damage;laser induced fluorecence

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
56+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
91+阅读 · 2021年6月11日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
28+阅读 · 2021年2月26日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
10+阅读 · 2020年11月26日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
56+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
91+阅读 · 2021年6月11日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
28+阅读 · 2021年2月26日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
10+阅读 · 2020年11月26日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
26+阅读 · 2018年8月19日
微信扫码咨询专知VIP会员