项目名称: 混沌信号的自适应分解方法研究及其应用
项目编号: No.61201375
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 电子学与信息系统
项目作者: 胡晰远
作者单位: 中国科学院自动化研究所
项目金额: 24万元
中文摘要: 本项目创新性地提出混沌信号的自适应分解算法,研究其在心电图(ECG)信号分析和诊断中的应用。主要内容包括:(1)针对目前基于算子的信号分解算法只能有效地分解线性平稳信号的局限性,研究具有非线性项的算子形式以及基于它的针对非线性和非平稳信号的分解算法;(2)结合非线性动力学模型及信号的自适应分解算法,研究针对单通道和通道个数有限的盲源信号分离算法,并用该算法对ECG信号进行分解和分析;(3)根据ECG信号的动力学模型,研究基于混沌理论及非线性滤波的ECG信号预处理方法,包括ECG信号的去噪、基线校正以及RR间期序列的去趋势等算法;(4)采用自适应分解算法对ECG信号和RR间期序列进行分解后,对每个子分量的非线性指标及它们之间的相关性进行研究,提出ECG信号分析和诊断的新方法。本项目不仅能在一定程度上完善和丰富信号自适应分解的方法和理论,而且还能够为ECG信号的分析和诊断提供一条新的途径。
中文关键词: 自适应信号分解;抗模式混叠;积分算子;基线校正;稀疏表示
英文摘要: In this proposal, we propose a new kind of approaches for adaptive separating chaotic signals and their applications in the field of Electrocardiography (ECG) signal analysis and diagonsis. The major research contents are listed as follows. (1) To overcome the limitations of the current operator-based adaptive signal separation algorithm, this project will research on the new forms of the operators that contain nonlinear terms and the corresponding separation algorithms based on these operators with new forms.Compared with the current operator-based approach, the new signal separation algorithms can adaptively separate nonlinear and nonstationary signals more efficiently. (2) Based on the nonlinear dynamic models and adapitve signal separation algorithms, this project will research on some new blind source separation approaches for single-channel or number-limited-channel signals. These approaches will be applied to separating and analyzing ECG signals. (3) We will further study the dynamic models of the ECG signal, and research on some new, chaos theory based, nonlinear techniques for ECG signal pre-processing. Those techniques include ECG signal denoising, baseline correction, detrending, and so on. (4) Based on the chaos and adaptive signal separation theories, we will research on the new methods for ECG sign
英文关键词: adaptive signal separation;anti-mode mixing;integral operator;baseline correction;sparse representation