项目名称: 具有成分梯度界面层的铜/金刚石复合材料的导热性能研究

项目编号: No.51271017

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 张海龙

作者单位: 北京科技大学

项目金额: 80万元

中文摘要: 结合金刚石优异导热性能和金属良好机械加工性能的金刚石颗粒增强金属基复合材料是理想的电子封装材料,然而金属/金刚石界面热阻是限制复合材料热导率提高的瓶颈。金属基体合金化和金刚石颗粒表面改性均可有效改善界面热导,考虑声子的热传导特点而引入成分梯度界面层有望进一步增加界面热导,提高金属/金刚石复合材料的热导率。本项目采用金刚石颗粒表面改性的方法,通过盐浴镀膜技术在单晶金刚石颗粒表面镀覆碳化钛涂层,利用气压浸渗技术制备铜/金刚石复合材料。系统研究材料制备参数对界面层微观结构的影响规律,获得具有不同厚度和不同成分梯度形貌的铜/碳化钛/金刚石界面层,阐明界面层微观结构对复合材料热导率的影响规律。利用声学错配模型研究成分梯度界面层的声子热传导过程,揭示界面微观结构影响界面热导的物理机制,为制备高热导率的铜/金刚石复合材料提供科学依据。成分梯度界面层的研究方法可应用于其他体系的金属/金刚石复合材料。

中文关键词: 金属基复合材料;热导率;界面层;金刚石;气压浸渗

英文摘要: Diamond particles reinforced metal matrix composites, abbreviated as metal/diamond composites, are a combination of superior thermal conductivity of diamond and good machinability of metals. This kind of composites is very promising for electronic packaging applications. The interface thermal resistance between metal matrix and diamond particles, however, is becoming a bottleneck to achieving high thermal conductivity in the composites. Metal matrix alloying and diamond particles modification are widely used to effectively enhance the interface thermal conductance, the reciprocal of interface thermal resistance. In view of the characteristics of thermal condution by phonons, the interface thermal conductance and hence the composite thermal conductivity could be further enhanced by the introduction of a compositionally graded metal/diamond interface. In the proposal, the diamond particles modification method was applied to improve the interfacial bonding between metal matrix and diamond particles. A TiC layer was coated onto the surface of single crystalline diamond particles by using the molten-salt method. Diamond particles reinforced copper matrix composites, abbreviated as Cu/diamond composites, were then produced with the gas pressure infiltration technique. The effect of fabricating parameters on interface

英文关键词: Metal matrix composites;Thermal conductivity;Interface layer;Diamond;Gas pressure infiltration

成为VIP会员查看完整内容
0

相关内容

深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
27+阅读 · 2021年2月12日
专知会员服务
182+阅读 · 2020年11月23日
专知会员服务
78+阅读 · 2020年8月4日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
自动机器学习:最新进展综述
专知会员服务
119+阅读 · 2019年10月13日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关VIP内容
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
27+阅读 · 2021年2月12日
专知会员服务
182+阅读 · 2020年11月23日
专知会员服务
78+阅读 · 2020年8月4日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
自动机器学习:最新进展综述
专知会员服务
119+阅读 · 2019年10月13日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员