项目名称: 催化精馏制备生物柴油过程中反应与分离协同机制及其调控

项目编号: No.21506031

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 有机化学

项目作者: 张慧

作者单位: 福建农林大学

项目金额: 21万元

中文摘要: 催化精馏技术是酯化法制备生物柴油的一个有效途径,应用前景十分广阔。然而,传统填料限于自身的流体力学和传质特性,难于满足催化精馏过程中反应与分离高度耦合的系统要求。本项目引入新型无溢流液体穿流结构催化填料(SCPI),充分利用SCPI低压降、高持液量、易结构设计等特性,合理调控反应和分离区位置,实现反应与分离过程的分区进行和多区域耦合强化。同时,引入夹带剂,既有利于分离区内水分的移除以强化反应过程,又可使醇-水混合物在塔顶分层回流,显著降低制备过程的能耗。项目拟将实验方法与数值模拟方法有效结合,考察SCPI空间结构、夹带剂用量、操作条件等因素对反应与分离耦合过程的影响,揭示反应与分离的强化机理、协同效应及其调控机制。项目旨在解决传统催化精馏技术制备生物柴油过程的强化与调控难题,提高生物柴油产率和纯度,为生物柴油的大规模连续化生产及商业化提供技术支持和理论依据。

中文关键词: 催化精馏;酯化法;生物柴油;协同效应;调控机制

英文摘要: Catalytic distillation technology is an effective way to produce biodiesel, and has a very broad application prospects. However, conventional packing confined itself hydrodynamics and mass transfer characteristics, it is difficult to meet the highly coupled requirements of reaction and separations in the catalytic distillation process. The project introduces a new non-overflow catalytic packing SCPI, which has low pressure drop, high liquid holdup, easy design and other features. Take advantage of these characteristics, we regulate the location of reaction and separation zone reasonably to achieve sub-regional reaction and separation, and multi-regional coupling of the two processes. The entrainer can facilitate removal of water from the separation zone to enhance the reaction, but also makes the alcohol-water mixture layered overhead, which significantly reduces the energy consumption of the separation process. The project aims to solve the problems of strengthening and regulation in the biodiesel production process and to provide technical support and theoretical basis for large-scale biodiesel production and commercialization.

英文关键词: Catalytic Distillation;Esterification ;Biodiesel;Synergy Effection ;Regulation Mechanism

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
智能无人集群系统发展白皮书
专知会员服务
295+阅读 · 2021年12月20日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
103+阅读 · 2020年11月27日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
海洋论坛丨水声目标识别技术现状与发展
无人机
26+阅读 · 2018年12月17日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
小贴士
相关主题
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
智能无人集群系统发展白皮书
专知会员服务
295+阅读 · 2021年12月20日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
103+阅读 · 2020年11月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员