项目名称: 多相反应过程中催化材料的表界面行为与调控策略

项目编号: No.91534127

项目类型: 重大研究计划

立项/批准年度: 2016

项目学科: 有机化学

项目作者: 韩一帆

作者单位: 郑州大学

项目金额: 80万元

中文摘要: 本项目针对材料表界面介尺度,围绕多相反应过程中催化材料表界面结构及其演变机制、介质传递和反应机理、介质与催化材料表界面作用规律及调控,采用实验、计算机分子模拟和理论分析研究相结合的方法,在介质分子、表界面和催化材料活性位群三个尺度上,通过重点发展并运用动态现场原位表征技术,获取动态反应过程中催化材料表界面的分子结构(结构信息),阐明介质诱导催化材料活性位群活化、稳定、失活的微观机理(演变规律),认识催化反应的基元路径及规律(微观反应)、宏观介质传递行为与微观分子吸附及反应的关系(不同微尺度的关联),建立表界面结构对传递过程及反应性能的影响(构-效关系),探索高性能催化材料设计及制备的新策略、新方法,探索强化反应的有效途径(调控方法)。

中文关键词: 催化剂;纳微界面;动态结构;原位谱学;催化理论

英文摘要: This project studies the structure and evolution mechanism of catalyst surface and interface in multiphase reactions, transfer and reaction mechanism of medium; the structure-tuning approaches for the interface between medium and catalyst surface will be rationalized. In particular, we aim at the mesoscale of solid catalyst surfaces and interfaces with the combination of experiments, computer molecular simulation and theoretical analysis methods. On the basis of three scales-medium molecule, surface and interface, active sites of catalysts, the dynamic structures at the molecular level (the structure information) of catalysts are prioritized using in situ/Operando characterization technologies. Moreover, deep insight into the micro-mechanism (the evolution rule) of activation, stabilization and deactivation of catalyst induced by medium, the pathway of catalytic reaction (micro-reaction) will be assumed, while the structure-modification of interface on transfer and reaction is proposed (the structure-performance relationship). Consequently, new strategies and methods of design and development of high-performance catalysts (the control method) related with different mesoscales are envisaged for the synthesis of value-added chemicals from syngas.

英文关键词: catalyst;micro nano interface;dynamic Structure;in-situ spectroscopy;catalytic theory

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
相关资讯
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员