项目名称: 发展钯催化的以底物为内氧化剂的反应-含氮化合物的合成和衍生化

项目编号: No.21202184

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机化学

项目作者: 刘桂霞

作者单位: 中国科学院上海有机化学研究所

项目金额: 25万元

中文摘要: 在钯催化的反应中,金属钯的常见价态为零价和二价,近年来出现了三价和四价钯机理。这些催化反应大多需要当量的外加氧化剂将低价钯氧化成高价钯以维持催化循环。常用的氧化剂(无机金属盐和有机氧化剂)会使反应过程中会产生当量的废料,原子经济性差,还可能导致配体和底物被氧化。以底物为内氧化剂可以避免外加氧化剂的这些缺陷,简化催化体系,提高催化效率,符合绿色化学的发展趋势。另一方面,有机钯中间体反应种类繁多。本申请拟结合钯化学的多样性,以底物中N-O键为内氧化剂,设计新型串联反应模式,发展高效绿色的催化反应来实现含氮化合物的合成和衍生化。底物中的N-O键及其取代基具有双重功能,不仅用作内氧化剂,还充当氮源或C-H键活化的导向基,以形成新的C-N键或C-C键。在催化循环中不涉及乃春(氮卡宾)中间体,防止副产物的生成。此外,将研究机理以对催化循环有更深入的理解。

中文关键词: 内氧化剂;过渡金属;C-H键官能团化;绿色化学;氧化型导向基

英文摘要: In palladium catalyzed reactions, while most catalytic cycles involve Pd(0)/Pd(II) state, higher-oxidant-state palladium complexes(Pd(III) and Pd(IV)) have been reported recently. These transformations usually require stoichiometric amount of an external oxidant to oxidize low-valent palladium and thus regenerate the palladdium catalyst. The drawbacks of external oxidants include poor atom economy producing stoichiometric amounts of the reduced external oxidant as waste,and possibly consumption of substrates and ligand by undesired oxidation.An alternative emerging strategy is the use of an oxidizing group in substrate, that is internal oxidant. Avoiding external oxidant,utilizing internal oxidant results in a clean and rather waste-free process, a simplified catalytic system, larger functional group tolerance and improved catalytic efficiency, which is compatible with the concept of green chemistry. On the other hand, organopalladium species exhibit diverse reactivity. Based on these knowledge, this proposal will design and explore novel palladium catalyzed cascade reactions using substrate with N-O bond as internal oxidant, which will lead to green catalysis with high efficiency for the synthesis and diversification of nitrogen containing compounds. Furthermore, the substrate containing N-O bond is bifunctiona

英文关键词: internal oxidant;transition metal;C-H functionalization;green chemistry;oxidizing directing group

成为VIP会员查看完整内容
0

相关内容

中国人工智能的发展现状及未来发展趋势,20页ppt
专知会员服务
138+阅读 · 2022年3月26日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
《人工智能在化学领域的应用全景》白皮书
专知会员服务
36+阅读 · 2022年1月22日
专知会员服务
19+阅读 · 2021年10月1日
专知会员服务
68+阅读 · 2021年9月10日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
96+阅读 · 2021年2月6日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
专知会员服务
221+阅读 · 2020年8月1日
人工智能预测RNA和DNA结合位点,以加速药物发现
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
46+阅读 · 2021年10月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
小贴士
相关主题
相关VIP内容
中国人工智能的发展现状及未来发展趋势,20页ppt
专知会员服务
138+阅读 · 2022年3月26日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
《人工智能在化学领域的应用全景》白皮书
专知会员服务
36+阅读 · 2022年1月22日
专知会员服务
19+阅读 · 2021年10月1日
专知会员服务
68+阅读 · 2021年9月10日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
96+阅读 · 2021年2月6日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
专知会员服务
221+阅读 · 2020年8月1日
相关资讯
人工智能预测RNA和DNA结合位点,以加速药物发现
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员