项目名称: 面向特征提取与理解的稀疏投影学习理论与算法研究

项目编号: No.61203376

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 赖志辉

作者单位: 哈尔滨工业大学

项目金额: 24万元

中文摘要: 感知并提取蕴含在高维数据中的关键特征变量对模式的识别与理解起着至关重要的作用。稀疏特征提取为感知、提取关键特征、提升模式识别能力开辟了一个全新的研究方向,但其理论与方法存在一系列尚未解决的问题。我们将构建基于极大边界准则、基于流形学习及基于图谱分析的稀疏特征提取理论与算法,力图建立全新的稀疏特征提取理论与算法框架来解决当前稀疏特征提取中存在的问题。本项目的特色是将人类感知图像的稀疏性机理与特征提取的研究结合起来,把稀疏性约束作用于投影向量上,以获取具有强鉴别力的稀疏投影(子空间)。本项目的顺利开展将丰富和发展鉴别分析、特征提取的理论体系,为高维模式关键特征(即物理变量、因子等)的感知、理解、提取提供综合的理论分析与算法基础,为采集和提取关键特征、提升模式识别的能力起着重要的指导作用。研究成果在图像识别、基因表达数据分析、病理分析、金融信息处理等领域都有非常重要的应用价值。

中文关键词: 稀疏特征提取;稀疏鉴别分析;模式识别;稀疏表示;流形学习

英文摘要: It is very important to perceive and extract the key features of the high-dimensional data in the field of pattern recognition. A new research area called sparse feature extraction is opened for perceiving and extracting the key features, where series of theorectical and algorithmic problems are eagerly needed to be solved. The novel theoretical and algorithmic frameworks are expected to build for solving the problems in sparse feature extraction based on the maximal margin criterion, manifold learning and graph spectral analysis. The characteristics of this research project are that the sparsity mechanism of human perception of images and the feature extraction theorems are combined together to obtain the sparse projections (subspace) with strong discriminant power by imposing the sparsity constraint on the projection vectors. This research will greatly amplify the amplify the theoretical system of discriminant analysis and feature exaction and regard us to collect and extract the key feature to enhance the capability in pattern recognition. In addition, the related theorems and methods could be widely used in the field of image recognition, genetic data analysis, pathological analysis, financial information processing, and so on.

英文关键词: Sparse feature extraction;Sparse discriminant analysis;Pattern recognition;Sparse representation;Manifold learning

成为VIP会员查看完整内容
0

相关内容

面向知识图谱的图嵌入学习研究进展
专知会员服务
61+阅读 · 2021年11月3日
面向行人重识别的局部特征研究进展、挑战与展望
专知会员服务
27+阅读 · 2021年10月13日
专知会员服务
23+阅读 · 2021年10月6日
专知会员服务
34+阅读 · 2021年2月7日
最新《统计机器学习》课程,26页ppt
专知会员服务
82+阅读 · 2020年8月30日
专知会员服务
50+阅读 · 2020年8月27日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
基于二进制哈希编码快速学习的快速图像检索
极市平台
12+阅读 · 2018年5月17日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
特征工程的特征理解(一)
机器学习研究会
10+阅读 · 2017年10月23日
手把手教你用LDA特征选择
AI研习社
12+阅读 · 2017年8月21日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Tikhonov Regularization of Circle-Valued Signals
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
面向知识图谱的图嵌入学习研究进展
专知会员服务
61+阅读 · 2021年11月3日
面向行人重识别的局部特征研究进展、挑战与展望
专知会员服务
27+阅读 · 2021年10月13日
专知会员服务
23+阅读 · 2021年10月6日
专知会员服务
34+阅读 · 2021年2月7日
最新《统计机器学习》课程,26页ppt
专知会员服务
82+阅读 · 2020年8月30日
专知会员服务
50+阅读 · 2020年8月27日
相关资讯
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
基于二进制哈希编码快速学习的快速图像检索
极市平台
12+阅读 · 2018年5月17日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
特征工程的特征理解(一)
机器学习研究会
10+阅读 · 2017年10月23日
手把手教你用LDA特征选择
AI研习社
12+阅读 · 2017年8月21日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员