项目名称: 高含量硼修饰有序介孔碳材料形成机理研究

项目编号: No.51303054

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 张衍

作者单位: 华东理工大学

项目金额: 25万元

中文摘要: 硼修饰有序介孔碳是一种性能优异的新型碳材料,在传感器、超级电容器和储氢材料等领域都具有巨大的应用潜力。本项目针对高含量硼修饰有序介观碳材料研究的热点与难点,提出以硼结构改性酚醛树脂为唯一前驱体,探索有机-有机自组装法制备硼掺杂量>3%,结构稳定,并且比表面积较大、孔径分布较窄的新型有序介孔碳材料的制备方法。通过硼改性酚醛前躯体分子设计,研究高硼掺杂下,模板剂和前驱体界面之间以及前驱体分子之间自组装过程中的作用关系,探索硼对树脂固化、热解以及成碳过程的影响。最终揭示高含量硼修饰有序介孔碳的形成机制。本项目的创新之处在于突破了现有制备方法硼掺杂量低,比表面积较小的局限性,提出仅以硼改性酚醛树脂为唯一前驱体,通过形成机理的研究,实现对改性碳材料介观结构和宏观形貌的有效控制,该法还具有成本低,工艺简单,碳热稳定性好等优点。本研究为丰富和提高此类材料的应用性能提供了设计方法和理论依据。

中文关键词: 有序介孔碳;硼掺杂;制备;溶剂挥发诱导自组装;机理

英文摘要: As a kind of new carbon materials, boron-doped ordered mesoporous carbon (B-OMC) has potential applications ranging from chemical sensor,supercapacitor to hydrogen storage. The project focuses on the formation mechanism of B-OMC with rich and uniform boron distributed, stable structure, high specific surface area and narrow distributed pore size, by using boron modified phenolic resins (BPF) as sole precursor, and amphiphilic surfactant as a soft template. The design of the molecular structure and synthesis routs of the BPF, which is suitable for self-assembly method, is to be established. The formation mechanism of rich boron-doped OMC will be revealed by investigating the relationship between BPF and surfactant during the self-assembly, and the effect of boron on the curing reaction, thermal decomposition and carbonating process of BPF. The innovation of the project lies in providing a new, low cost and simple strategy for preparing B-OMC, which not only has high boron-doped content(>3%), but also high specific surface area and narrow distributed pore size. Therefore, an important design method and theoretical basis are to be established with significant application value to this category of materials.

英文关键词: ordered mesoporous carbon;boron-doped;preparation;solvent evaporation induced self-assembly;mechanism

成为VIP会员查看完整内容
0

相关内容

【ICML2022】药物结合结构预测的几何深度学习
专知会员服务
25+阅读 · 2022年5月24日
【Cell】可扩展深度图神经网络的高性能材料性能预测
专知会员服务
17+阅读 · 2022年5月4日
「知识蒸馏」最新2022研究综述
专知会员服务
121+阅读 · 2022年3月20日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
专知会员服务
52+阅读 · 2021年6月14日
专知会员服务
15+阅读 · 2021年6月6日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2020年2月5日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
30+阅读 · 2019年3月13日
Arxiv
24+阅读 · 2018年10月24日
小贴士
相关主题
相关VIP内容
【ICML2022】药物结合结构预测的几何深度学习
专知会员服务
25+阅读 · 2022年5月24日
【Cell】可扩展深度图神经网络的高性能材料性能预测
专知会员服务
17+阅读 · 2022年5月4日
「知识蒸馏」最新2022研究综述
专知会员服务
121+阅读 · 2022年3月20日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
专知会员服务
52+阅读 · 2021年6月14日
专知会员服务
15+阅读 · 2021年6月6日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
15+阅读 · 2020年2月5日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
30+阅读 · 2019年3月13日
Arxiv
24+阅读 · 2018年10月24日
微信扫码咨询专知VIP会员