项目名称: 考虑阻尼器极限状态消能减震结构的抗震性能及设计方法研究
项目编号: No.51478356
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 建筑环境与结构工程学科
项目作者: 薛松涛
作者单位: 同济大学
项目金额: 85万元
中文摘要: 因高强混凝土和高强钢筋的采用,结构向更高、更柔的方向发展,为控制地震或风振引起的结构振动,消能减震技术的应用日趋广泛。但是其抗震性能的研究尚不够充分,日本3.11震后调查发现一栋消能减震钢结构的粘滞阻尼器发生了严重的损伤和破坏,这表明阻尼器极限状态的存在而且会影响到结构的抗震性能。本项目采用物理试验的方法测试、明确消能器的极限状态和破坏机理,建立考虑阻尼器极限状态的恢复力模型,通过数值模拟研究极端地震荷载作用下消能减震结构的动力失效路径和连续失效模式;基于不确定性分析方法研究消能减震结构的抗震性能水准与抗震性能指标之间的定量关系,建立基于概率的多级抗震性能目标;量化阻尼器的性能水准,建立与主体结构抗震性能目标相匹配的消能器性能目标;初步建立考虑阻尼器极限状态的消能减震结构的性能设计方法,为有效控制消能减震结构的地震损伤和经济损失提供基础理论和研究方法。
中文关键词: 消能减震结构;极限状态;抗震性能;阻尼器;非线性分析
英文摘要: Due to the utilization of high-strength concrete and high-strength steel in structural construction, the building is becoming taller and more flexible than ever. In order to control or suppress the structural vibration induced by the earthquakes or winds, the application of passive energy dissipation technologies became widespread. However, the Japan 2011 Tohoku Earthquake destroyed the viscous dampers of a passively-controlled steel building, which is located in Sendai. This event demonstrates that significant improvements need to be made regarding to the study on the seismic performance of passive energy dissipation structures. This project is planning to test the limit states and damage process of dampers by designing physical experiments, and establishes the mathematic model of the restoring force which is able to represent the limit states and failure modes of dampers. The failure path and successive failure modes of passively-controlled buildings under extremely intense earthquakes are investigated by numerical simulation integrating the restoring force model and nonlinear damage model of structural members. Based on the uncertainty analysis method, the relation between the seismic performance level of passive energy dissipation building and the seismic performance index is evaluated quantitatively, and the multi-level seismic performance target is determined. After quantifying the performance level of dampers based on the experimental measurement, dampers' performance targets are set according to the performance requirement of the main building. In this project, the framework of performance-based design methodology of passively-controlled buildings considering the limit states of dampers is initially proposed. This achievement will benefit the theory and application of damage control of passively-controlled buildings.
英文关键词: Passively-controlled structure;Limit state;Seismic performance;Damper;Nonlinear dynamic analysis