项目名称: 基于静息状态功能磁共振成像的注意缺陷多动障碍分类研究

项目编号: No.61272356

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 田丽霞

作者单位: 北京交通大学

项目金额: 80万元

中文摘要: 注意缺陷多动障碍(ADHD)的客观诊断是当今儿童精神卫生领域的热点研究课题。静息状态功能磁共振成像(fMRI)技术在神经精神疾病的分析与辅助诊断方面具有独到优势,基于该技术的神经精神疾病研究的广泛开展使得融合多中心静息状态fMRI数据形成大样本进而开展神经精神疾病分类研究成为未来脑功能研究的一个重要发展方向。本项目将基于多中心大样本静息状态fMRI数据进行ADHD分类研究。具体地,本项目将在解决目前多中心大样本静息状态fMRI数据分析中存在的共性问题(如被试头动因素、多数据采集中心因素、样本年龄跨度因素等的影响)的基础上,采用独立成分分析、复杂脑网络分析等fMRI数据分析方法提取分类特征,并结合适当的分类算法,开展ADHD分类研究。本项目在促进ADHD的客观诊断之外,还将为未来基于多中心大样本静息状态fMRI数据的其它神经精神疾病的分类研究提供借鉴。

中文关键词: 注意缺陷多动障碍;静息状态fMRI;分类;;

英文摘要: The objective diagnosis of Attention Deficit / Hyperactivity Disorder (ADHD) is one of the research foci in the region of children mental health. Resting state fMRI is an advantagous technique for the pathology analyses and computer-aided diagnoses of psychiatric diseases. The extensive investigations of psychiatric diseases based on resting state fMRI make it a promissing research region to integrate resting state fMRI data from different research centers into one dataset and perform psychiatric disease classification based on this integrated multi-center & large-sample-size dataset. This project is aimed at ADHD classification based on multi-center & large-sample-size resting state fMRI dataset. This project will be performed by: (1) solving the common problems in the analysis of multi-center large-sample-size fMRI data (such as the influences of head motion, age range and different data collection sites); (2) using novel fMRI data analysis methods (such as independent component analysis and complex brain network analysis) in combination with proper classification algorithms. The project would not only facilitate the objective diagnosis of ADHD, but also benefit the classification of other psychiatric diseases based on multi-center & large-sample-size resting state fMRI datasets.

英文关键词: ADHD;resting state fMRI;classification;;

成为VIP会员查看完整内容
0

相关内容

卷积神经网络中的注意力机制综述
专知会员服务
75+阅读 · 2021年10月22日
专知会员服务
27+阅读 · 2021年10月6日
专知会员服务
56+阅读 · 2021年9月22日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
51+阅读 · 2021年4月6日
专知会员服务
79+阅读 · 2021年2月16日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
自动化所人工智能辅助诊断方法进入肿瘤诊疗指南
中国科学院自动化研究所
1+阅读 · 2021年9月3日
【综述】计算机视觉简介:历史、现状和发展趋势【可下载】
机器学习算法与Python学习
15+阅读 · 2018年9月21日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
12+阅读 · 2018年9月5日
小贴士
相关VIP内容
卷积神经网络中的注意力机制综述
专知会员服务
75+阅读 · 2021年10月22日
专知会员服务
27+阅读 · 2021年10月6日
专知会员服务
56+阅读 · 2021年9月22日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
51+阅读 · 2021年4月6日
专知会员服务
79+阅读 · 2021年2月16日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
相关资讯
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
自动化所人工智能辅助诊断方法进入肿瘤诊疗指南
中国科学院自动化研究所
1+阅读 · 2021年9月3日
【综述】计算机视觉简介:历史、现状和发展趋势【可下载】
机器学习算法与Python学习
15+阅读 · 2018年9月21日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员