项目名称: 基于光声光谱技术的密封舱内多组分痕量气体浓度检测系统研究

项目编号: No.61203204

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 姜萌

作者单位: 北京航天控制仪器研究所

项目金额: 26万元

中文摘要: :本项目探索一种基于自校准光声光谱技术的痕量多组分气体浓度在线检测系统。当窄带光入射进光声池式,如果光波长与气体分子特征波长一致,麦克风探测到受激的气体分子引起的声压信号涨落,实现对气体浓度的测量。本项目通过研究微型光声池设计与加工技术,使光声池的谐振频率与激光调制频率一致。并且采用差分光路避免外界环境对测量的干扰,实现对气体浓度的自校准与标定。本项目重点研究宽带可调谐激光光源技术,探索使用基于F-P滤波器的超连续光子晶体光纤激光器作为光源,实现高功率、宽带可调谐范围的激光波长输出。采用谐波检测技术设计锁相检测电路,实现小型化、高可靠的载人航天舱内一氧化碳CO和氨气NH3浓度的同时在线测量,系统最低测量极限为100ppb。

中文关键词: 气体传感;音叉增强光声光谱;光子晶体光纤;气体填充;掺铥光纤放大器

英文摘要: This project explores an on-line detection system based on self-calibrated Photoacoustic Spectroscopy technique used to measure the multi-component trace gas concnetration. Mircomachined photoacoustic cell and cantilever microphone are fabricated and designed. When a narrowband light beam is introduced into the photoacoustic cell ,if gas molecules is excited by the light, The non-radiative decay of excited molecules generates heat variations, which leads to pressure variations. Researches should be done on the fabrication of miromachined resonant photoacoustic cell to make sure the resonant frequency is the same with modulation frequency. The self-calibration gas cencentration technique based on differential optical absorption also should be studied to avoid the surrounding disturbance on the . Researches is focused on supercontinumm light source,photonics crystal fiber and F-P filter is utilized to achieve th high power, wavelength tunable and flattening fiber laser. Based on harmonic detection technology phaselocked detection circuit is utilized to realize the carbon monoxide CO and ammonia NH3 trace gas measurement system in manned spacecarft carbin with small size and low power consumption. The lowest detetion limit is 100 ppb(part per billion by volume).

英文关键词: gas sensing;quartz enhanced photoacoustic spectroscopy;photonics crystal fiber;gas filling;Thulium doped fiber amplifier

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
82+阅读 · 2022年4月17日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
15+阅读 · 2021年8月13日
专知会员服务
25+阅读 · 2021年4月2日
使用OpenCV搭建违章停车检测系统
极市平台
1+阅读 · 2022年2月25日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
2018中国电子学会科学技术奖评审结果公示
专知
22+阅读 · 2018年12月4日
一种关键字提取新方法
1号机器人网
21+阅读 · 2018年11月15日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
82+阅读 · 2022年4月17日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
15+阅读 · 2021年8月13日
专知会员服务
25+阅读 · 2021年4月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员