项目名称: 计及粘性的近距两船水动力干扰非线性时域分析方法研究
项目编号: No.51509256
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 其他
项目作者: 姚朝帮
作者单位: 中国人民解放军海军工程大学
项目金额: 20万元
中文摘要: 航行补给是海军舰艇编队远洋航行的重要环节,其中涉及的近距两船水动力干扰问题已成为海军强国的重点研究课题。补给作业时,在入射波浪作用下,两船间的液面会显著抬升,并由此诱导船体发生大幅的运动响应,此时粘性和非线性效应非常明显,采用传统的线性势流理论遇到很大的挑战。然而,关于近距两船运动与受力的非线性理论与试验分析方法、近距两船相互作用时的流体动力学机理以及流体粘性在两船水动力干扰中的作用机理的相关研究还相对较少。.本项目开展波浪中近距航行两船水动力干扰全非线性的粘性CFD理论计算方法研究,深入分析流体粘性影响两船运动、受力以及船间自由面波形的内在机理;在此基础上,为提高计算效率,进一步开展理论简化方面的研究,建立计及粘性影响的非线性时域算法,研制具有自主知识产权的波浪中两船近距航行相互作用水动力的预报软件。
中文关键词: 航行补给;水动力干扰;非线性时域算法;粘性;波浪
英文摘要: Underway replenishment is an essential component of long-term naval operation. As an important step of the maritime logistics, it has been brought more and more attention of navies in the world. Under these situations, the two ships are assumed advancing parallel with identical forward speed, each ship produces and scatters translating, radiation and diffraction waves, and these waves excite other ships’ motions and interfere with each other. Due to this fact, the large wave elevation in-between them may be happen, further, to result in the aggravation of the motions of each ship. At this moment, the fluid viscosity and nonlinearity are prominent, and traditional linear potential theory may be not proper to analyze this problem. However, theoretical and experimental researches about nonlinear method to solve this problem are rare; the relative mechanism and the role of fluid viscosity have not been clearly stated..In this study, the fully nonlinear three dimensional method based on Navier-Stokes equations will be established to investigate the hydrodynamic interaction between two ships in close proximity and reveal the influence of fluid viscosity on motions, wave loads and wave elevation in-between the gap of them. Further, to improve the efficiency, the nonlinear time domain method taking the effect of viscosity of fluid will be proposed. Based on this numerical solution, software with proprietary intellectual property will be developed.
英文关键词: underway replenishment;hydrodynamic interaction;nonlinear time domain method;fluid viscosity;wave