项目名称: 基于光子晶体波导的量子芯片相干特性研究

项目编号: No.61205043

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 冯志刚

作者单位: 中国科学院半导体研究所

项目金额: 26万元

中文摘要: 面向未来量子信息技术应用,新型集成化的量子芯片是目前研究的前沿热点。国际上于2008年首次基于硅波导,研制成功具有单元功能的量子芯片,率先在芯片中实现了量子逻辑门等功能,开辟了量子信息集成化的新纪元。但由于硅波导尺度大(长度mm量级),导致多功能量子逻辑芯片的可小型集成化成为发展的一个瓶颈,也是科学家们普遍关注的科学技术难题。 本项目旨在基于光子晶体波导的量子芯片,结合光子晶体对光子的调控机理,实现在微纳尺度内对光子的量子相干操纵。理论上设计具有量子干涉、相位调控等逻辑功能的光子晶体波导量子芯片;实验上引入成熟的硅基材料微纳加工技术,实现路径编码量子干涉的高效定向耦合器和微小尺度相位可调的马赫曾德尔干涉仪,进而研制特定的量子逻辑门单元器件,对研制的光量子芯片进行量子相干特性研究,最终获得高干涉可见度,高稳定性的光子晶体波导量子芯片,为更复杂的全固态量子芯片的设计和研制奠定理论和实验基础。

中文关键词: 光子晶体;定向耦合器;量子行走;量子干涉;自准直

英文摘要: Facing future application of quantum information technologies, the new pattern and integrated quantum circuits are current research fcous. In 2008, the international first quantum circuits having unit function have been successful manufactured basing on the silicon waveguide,and took the lead in realising quantum logic gate function and so on in circuits ,which open up new era of quantum information integrated. Due to the large scale of silicon waveguide (millimeter scaling in length),which result in multi-function, small integrated quantun logic circuits become a bottleneck for further development,and this science and technology difficult problem cause widespread concern of scientists at the same time. The project aimed at achieving the quantum interference manipulation of photon in micro nano scale range basing on photonic crystal waveguide quantum circuits, combining the photonic regulate and control mechansim of photonic crystal to photon. We design theoretically the photonic crystal waveguide quantum circuits having logic function of quantum interference and phase control;We realise experimentally high efficiency directional coupler and Mach-Zehnder interferometer having path-code quantum interference by intruducing skilled micro nano fabrication technology of silicon-based material,then develop unit d

英文关键词: Photonic Crystal;Directional Coupler;Quantum Walk;Quantum Interference;Self-collimation

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
43+阅读 · 2022年1月1日
阿里达摩院十大科技趋势报告,31页pdf
专知会员服务
67+阅读 · 2021年12月29日
专知会员服务
32+阅读 · 2021年10月12日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
79+阅读 · 2021年5月14日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Transparent Shape from Single Polarization Images
Arxiv
0+阅读 · 2022年4月19日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
19+阅读 · 2018年3月28日
小贴士
相关VIP内容
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
43+阅读 · 2022年1月1日
阿里达摩院十大科技趋势报告,31页pdf
专知会员服务
67+阅读 · 2021年12月29日
专知会员服务
32+阅读 · 2021年10月12日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
79+阅读 · 2021年5月14日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员