项目名称: 宽风速范围高效运行的风致振动微型压电能量收集器的研究

项目编号: No.51305248

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 张健滔

作者单位: 上海大学

项目金额: 26万元

中文摘要: 大范围内分布式传感器节点的能量自供给是无线传感器网络发展的关键技术之一,研究利用当地风力提供电能的方法是解决节点能量供给的有效途径。本申请拟探究环境风激励下利用振动系统非线性扩展能量收集器有效工作范围的机理,研究风能聚集与风压放大的方法,以提出宽风速范围高效运行的风致振动微型压电能量收集器的设计方法;研究能量收集器空气运动-结构振动-电场三者相互作用机理,在建立空气运动-结构振动耦合模型和结构振动-电场耦合模型的基础上,提出能量收集器的理论建模方法,并探究风场、特征参数对其性能的影响规律;分析能量收集器所涵盖的各学科的耦合关系,探究其各学科的近似模型、多学科设计优化求解策略与优化算法,并在此基础上提出该能量收集器多学科设计优化方法,解决收集器性能优化问题。本申请的研究旨在对基于风致振动的压电俘能方法及相关理论进行探索,以实现分布式无线传感器节点的能量自供给,并促进清洁能源的开发与利用。

中文关键词: 能量收集器;风致振动;压电;理论模型;优化设计

英文摘要: Self-powering of distributed sensor nodes in a big region is one of the key technologies of wireless sensor network. Exploring the method of converting local wind energy to electrical energy is a good solution to power the sensor nodes. First, the proposed work is intended to explore the mechanism by which the working range of the energy harvesters under the excitation of a natural wind is extended using the the nonlinear of the vibration system. The methods of wind energy aggregation and wind pressure amplification are studied. The micro piezoelectric energy harvesters using wind-induced vibration are designed to efficiently operate in a wide range of wind speed. And the design method is developed. Second, the fundamental mechanism of the three-way coupled interaction between the air motions, the structural vibration and electrical field is studied. An aero-mechanical coupling model and an mechanical-electrical coupling model are developed. The theoretical modeling method for the energy harvesters is proposed and the influence of wind field and characteristic parameters on harvester performance is analyzed. Third, the coupling relationship between the disciplines related to the energy harvesters is clarified. The approximation models of different disciplines, the decomposition strategies of multidisciplinary de

英文关键词: energy harvesters;wind-induced vibration;piezoelectricity;theoretical model;optimal design

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
专知会员服务
26+阅读 · 2021年9月4日
专知会员服务
25+阅读 · 2021年6月9日
专知会员服务
55+阅读 · 2020年12月20日
专知会员服务
28+阅读 · 2020年10月9日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
月圆花美 中秋快乐!
开放知识图谱
0+阅读 · 2021年9月21日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
11+阅读 · 2018年7月31日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员