项目名称: 光频上转换的材料尺寸效应研究

项目编号: No.11274139

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 秦伟平

作者单位: 吉林大学

项目金额: 95万元

中文摘要: 光频上转换是一种重要的物理学方法;基于上转换原理的材料和器件在激光、太阳能电池、医疗、军事、航空航天和日常生活中有着十分诱人的应用前景。然而,高的激发光功率和低的转换效率是限制这些应用的关键因素。上转换发光的材料尺寸效应的发现为消除这些限制提供了可能。对这种尺寸效应进行系统的研究不仅可以丰富人们对微纳材料中物理规律的认识,而且可能为上述应用找到新的材料设计依据。本项目拟在项目组前期工作的基础上通过对微纳材料中上转换尺寸效应的深入研究,从基本物理(动力学)过程、材料实现条件两个方面展开系统的探索,并预期实现如下研究目标:1、规范这种尺寸效应,从理论上阐明其机理;2、阐明尺寸效应对高阶多光子上转换过程的增强机制;3、制备出低激发阈值的上转换发光材料,阐明弱光激发下微纳材料中上转换布居的特征;4、得到高效低阈值材料在生物信息探测、太阳能电池等应用中的关键参数;5、获得相关关键技术的自主知识产权。

中文关键词: 尺寸效应;光频上转换;发光;多光子过程;近红外光

英文摘要: Optical frequency upconversion is an important physical method. Materials and devices based on the principle will meet many charming applications in laser, solar cell, medical care system, military, aerospace and daily life. However, its high excitation power density and low conversion efficiency have been the key limitations in using the technique. The found of material size effect in optical upconversion provides a possibility to get rid of these limitations. Carrying on the research on the size effect not only can enrich our understanding to the physical mechniam ruled in micro-nano materials, but also may help material engineers to find out new design considerations for the above-mentioned applications. On the basis of our previous researches, this project is planning to study the size effect systematically from basic physical (dynamical) processes to material methods and perform following targets: 1. define the size effect and elucidate its mechanism in theory; 2. elucidate the mechanism of enhanced multi-photon upconversion induced by the size effect; 3.synthesize upconversion materials for the applications of low power excitation, clarify the mechanism of these processes occurred in micro-nano materials under low excitation power density; 4. obtain key material parameters for the applications in biologica

英文关键词: Size effect;Optical frequency upconversion;Luminescence;Multi-photon;Near Infrared

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
104+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年5月7日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
12+阅读 · 2019年4月9日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员