项目名称: 高能量分辨、高收集效率磁瓶型带电粒子能量谱映射技术研究

项目编号: No.11505289

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 康轶凡

作者单位: 中国人民解放军空军工程大学

项目金额: 23万元

中文摘要: 当前,阿秒激光光谱学、电子动量谱学及光电子能谱学对新型高性能带电粒子能量(动量)谱映射技术的需求极为强烈。针对此,该项目在明晰现有技术性能提升瓶颈基础上,通过探究绝热磁镜效应所具有的带电粒子聚焦及精细映射双重功能,重点阐述其内在物理机制及其应用实现,洞悉其通过削弱单一能量的角度色散性、等效增加单一角度的能量色散性而最终提升能量分辨率参数性能的技术原理,同时分析绝热磁镜效应的强准直效应在提高系统带电粒子收集效率方面的功效,最终给出完备的技术理论阐述。给出一种电子能量谱映射仪设计方案,对初始发射动能为0~300 eV的电子而言,其粒子收集效率不低于50%、相对能量分辨率优于0.5%;同时研制测试样机,进行阿秒光谱学实验研究。此研究可为该技术后续工程推广应用提供技术参考。

中文关键词: 映射;绝热磁镜效应;高收集效率;高能量分辨;带电粒子

英文摘要: Currently, new type of high-performance energy (momentum) mapping technique is strongly demanded in attosecond laser spectroscopy, electron momentum spectroscopy and photoelectron spectroscopy. Aiming at this, the project will focus on studying the magnetic-bottle type charged particle energy spectrum mapping technique with high energy resolution and high collection efficiency, which also can be used in situation of differential pumping. The content includes: studying the mechanism of focusing and mapping charged particle initial energy state by the adiabitic magnetic mirror effect; exploring the technical principles of enhancing energy resolution by weakening the angle dispersive for any emission energy, and equivalently increasing the energy dispersive for any emission angle; analyzing the strong collimation impact of magnetic mirror effect on improve the particle collection efficiency; and ultimately providing a comprehensive theoretical technical elaboration. The corresponding output is a magnetic-bottle type electron energy spectrum mapping instrument design, of which the initial kinetic electron energy is 0~300 eV, particle collection efficiency is not lower than 50%, the relative energy resolution of better than 0.5%. At last but not least, a test prototype will be conducted to do experimental study of attosecond spectroscopy. The study herein provides technical reference for those subsequent engineering applications.

英文关键词: Mapping;Adiabatic magnetic mirror effect;High collection efficiency;High energy resolution;Charged particle

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
49+阅读 · 2021年8月4日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
105+阅读 · 2021年6月8日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
72+阅读 · 2021年3月27日
专知会员服务
106+阅读 · 2020年10月31日
专知会员服务
81+阅读 · 2020年6月20日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
使用 TensorFlow 在 CERN LHC 一次性重构数千颗粒子
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【边缘计算】边缘计算面临的问题
产业智能官
17+阅读 · 2019年5月31日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
49+阅读 · 2021年8月4日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
105+阅读 · 2021年6月8日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
72+阅读 · 2021年3月27日
专知会员服务
106+阅读 · 2020年10月31日
专知会员服务
81+阅读 · 2020年6月20日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
使用 TensorFlow 在 CERN LHC 一次性重构数千颗粒子
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【边缘计算】边缘计算面临的问题
产业智能官
17+阅读 · 2019年5月31日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员