【IJCV2020】通过迭代亲密学习实现弱监督语义分割

2020 年 2 月 20 日 专知

弱监督语义分割是一项具有挑战性的任务,因为没有提供像素级的标签信息供训练使用。最近的方法利用分类网络,通过选择具有强响应的区域来定位目标。然而,虽然这种响应映射提供了稀疏信息,但在自然图像中像素之间存在很强的两两关系,可以利用这种两两关系将稀疏映射传播到更密集的区域。本文提出了一种迭代算法来学习这种两两关系,它由两个分支组成,一个是学习每个像素的标签概率的一元分割网络,另一个是学习亲和矩阵并细化由一元网络生成的概率图的两两亲和网络。将两两网络的细化结果作为监督,对一元网络进行训练,通过迭代的方法逐步获得较好的分割效果。为了在不需要精确标注的情况下获得可靠的像素亲和力,我们还提出了可信区域的挖掘方法。我们证明了迭代训练这个框架等价于优化一个收敛到局部最小值的能量函数。在PASCAL VOC 2012和COCO数据集上的实验结果表明,所提出的算法在性能上优于目前最先进的方法。


地址

https://arxiv.org/abs/2002.08098




专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“SIAL” 就可以获取通过迭代亲密学习实现弱监督语义分割》论文专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
6

相关内容

【资源】NLP多标签文本分类代码实现工具包
专知
40+阅读 · 2019年11月20日
让机器“一叶知秋”:弱监督视觉语义分割
深度学习大讲堂
6+阅读 · 2018年5月24日
结合弱监督信息的凸聚类
计算机研究与发展
6+阅读 · 2017年8月30日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员