【NeurIPS2020提交论文】建立具有消息传递的等变图神经网络

2020 年 6 月 29 日 专知

Building powerful and equivariant graph neural networks with message-passing


消息传递被证明是一种设计图神经网络的有效方法,因为它能够利用排列等方差和对学习局部结构的归纳偏差来实现良好的泛化。然而,当前的消息传递体系结构的表达能力有限,无法学习图的基本拓扑性质。我们解决了这个问题,并提出了一个新的消息传递框架,它是强大的同时保持置换等方差。具体来说,我们以单热点编码的形式传播惟一的节点标识符,以便了解每个节点的本地上下文。我们证明了我们的模型在极限情况下是通用的,同时也是等变的。通过实验,我们发现我们的模型在预测各种图的拓扑性质方面具有优势,为新型的、功能强大的等变和计算效率的结构开辟了道路。


https://arxiv.org/abs/2006.15107



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“EGNN” 可以获取《[NeurIPS2020提交论文】建立具有消息传递的等变图神经网络》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
【MIT-ICML2020】图神经网络的泛化与表示的局限
专知会员服务
42+阅读 · 2020年6月23日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
八篇NeurIPS 2019【图神经网络(GNN)】相关论文
专知会员服务
43+阅读 · 2020年1月10日
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
37+阅读 · 2019年11月3日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
【资源】元学习论文分类列表推荐
专知
19+阅读 · 2019年12月3日
【资源】图深度学习文献列表
专知
42+阅读 · 2019年11月6日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
【MIT-ICML2020】图神经网络的泛化与表示的局限
专知会员服务
42+阅读 · 2020年6月23日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
八篇NeurIPS 2019【图神经网络(GNN)】相关论文
专知会员服务
43+阅读 · 2020年1月10日
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
37+阅读 · 2019年11月3日
相关论文
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员