新书推荐
🌟今日福利
|关于本书|
√ 领域名家扛鼎之作。本书汇集了人工智能领域的12位名家,他们均是机器学习、计算机视觉、自然语言处理,以及在生物医疗、金融、推荐系统等应用领域的集大成者,研究成果卓著,本书正是诸位专家数年研究成果的扛鼎之作。
√ 系统全面自成一体。本书讨论了可解释AI的目的、定义、范畴、面临的挑战及未来发展方向,特别是本书多角度论述了可解释AI的不足,并提出了基于人机交互沟通的可解释AI范式。
√ 理论实践价值兼备。本书系统地论述了可解释AI的理论发展现状,并按照五类分类介绍了解释性方法,即可解释图模型、贝叶斯深度学习模型、基于知识图谱的可解释模型、基于可解释性的交流学习、对神经网络的解释。同时,本书从介绍了可解释性方法在医疗、金融、视觉、自然语言处理、推荐系统等方面的应用角度出发,明确指出在各种场景下解释所要达到的具体目标。
√ 应用案例翔实丰富。本书从分析对可解释AI的实际需求出发,深入及时地介绍前沿方法。全书共有15个应用案例,分别包括:基因编辑和医学影像处理,金融量化投资和信用违约预测,模型安全、视觉问答和知识发现,对话系统、智能问答、情感分析和自动文摘,电子商务、社交网站、基于位置的服务和多媒体系统。不同行业的产业从业者,都可以从中了解可解释AI的落地方法。
|关于作者|
杨 强
加拿大工程院及加拿大皇家科学院两院院士,国际人工智能联合会IJCAI前理事会主席,香港科技大学讲席教授。领衔全球迁移学习和联邦学习研究及应用,最近的著作有《迁移学习》《联邦学习》《联邦学习实战》《隐私计算》等。
范力欣
微众银行人工智能首席科学家,研究领域包括机器学习和深度学习、计算机视觉和模式识别、图像和视频处理等。
朱 军
清华大学计算机系教授、人智所所长、北京智源人工智能研究院和瑞莱智慧首席科学家,主要从事机器学习研究。
陈一昕
华夏基金董事总经理,首席数据官兼首席技术官。美国华盛顿大学计算机系教授、大数据科学中心创始主任。研究领域为金融科技、金融数据挖掘、智能投资研究、机器学习、优化算法等。
张拳石
上海交通大学副教授,博士生导师。研究方向为机器学习和计算机视觉,尤其是神经网络可解释性。
朱松纯
北京通用人工智能研究院院长,北京大学人工智能研究院院长,清华大学通用人工智能研究院院长。长期致力于构建计算机视觉、认知科学、乃至人工智能科学的统一数理框架。
陶大程
澳大利亚科学院院士,京东探索研究院首任院长,兼任悉尼大学数字科学研究所顾问及首席科学家。主要关注可信人工智能研究,尤其是深度学习的基础理论、大规模模型分布式训练以及相关的机器视觉应用。
崔 鹏
清华大学计算机系长聘副教授,博士生导师。研究兴趣聚焦于大数据驱动的因果推理和稳定预测、大规模网络表征学习等。
周少华
中国科学技术大学讲席教授、生物医学工程学院执行院长、影像智能与机器人研究中心(筹)主任、中科院计算所客座研究员、香港中文大学(深圳)客座教授。长期致力于医学影像的研究创新及其应用落地。
刘 琦
同济大学生命科学与技术学院生物信息系长聘教授,博士生导师。致力于发展人工智能和生物组学交叉融合的研究范式,进行精准医学研究。
黄萱菁
复旦大学计算机科学技术学院教授,博士生导师。研究领域为人工智能、自然语言处理、信息检索和社会媒体分析。
张永锋
罗格斯大学计算机系助理教授,博士生导师,互联网智能与经济实验室主任。研究兴趣为机器学习、数据挖掘、信息检索和推荐系统等。
PaperWeekly携手博文视点送书啦!
点击下方名片关注「AI 求职」
在后台回复暗号“解释”
即可参与赢取这本重磅新作
奖品数量共计 10 份!
活动截止时间为 6 月 5 日 19:00
👇
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧