近年来,图神经网络(GNN)领域取得了快速和令人难以置信的进展。图神经网络,又称图深度学习、图表示学习或几何深度学习,已成为机器学习特别是深度学习领域发展最快的研究课题之一。这波图论和深度学习交叉的研究浪潮也影响了其他科学领域,包括推荐系统、计算机视觉、自然语言处理、归纳逻辑编程、程序合成、软件挖掘、自动规划、网络安全和智能交通。

尽管图神经网络已经获得了极大的关注,但在将其应用到其他领域时,它仍然面临着许多挑战,从方法的理论理解到实际系统中的可扩展性和可解释性,从方法的可靠性到应用中的经验性能。然而,随着该领域的迅速发展,获得全球视野的gnn的发展已成为一项极具挑战性的工作。

因此,我们感到迫切需要弥补上述差距,并就这一快速发展但具有挑战性的主题出版一本全面的书,它可以造福广泛的读者,包括高级本科生和研究生、博士后研究人员、讲师和行业从业者。

这本书旨在涵盖图神经网络中广泛的主题,从基础到前沿,并从方法到应用。本书致力于介绍GNNs的基本概念和算法,GNNs的新研究前沿,以及GNNs的广泛和新兴应用。

书籍地址: https://graph-neural-networks.github.io/index.html

领域大牛推荐

“第一本全面涵盖一个快速发展的研究领域——图神经网络(GNN)的书,由权威作者撰写!”

韩家炜 - 美国伊利诺伊大学香槟分校计算机系教授,IEEE和ACM院士

这本书提出了一个全面和及时的图表示学习综述。由这一领域最好的专家编辑撰写,这本书是想学习任何关于图神经网络的学生,研究人员和实践者的必读作品。”

沈向洋-计算机视觉和图形学研究的世界级专家,IEEE Fellow,ACM Fellow)美国工程院院士,英国皇家工程科学院的国际院士

“作为深度学习的新前沿,图神经网络在结合概率学习和符号推理、连接知识驱动和数据驱动范式、开启第三代人工智能发展方面提供了巨大的潜力。这本书提供了全面和深刻的GNN介绍,从基础到前沿,从算法到应用。对于任何想要进入这一令人兴奋的领域的科学家、工程师和学生来说,这都是宝贵的资源。”

张钹 - 中国科学院院士,清华大学教授

“图神经网络是机器学习最热门的领域之一,这本书是一个很棒的深度资源,涵盖了图表示学习的广泛主题和应用。” Jure Leskovec -斯坦福大学副教授

图神经网络是一种新兴的机器学习模型,已经在科学和工业领域掀起了一场风暴。是时候采取行动了!它的章节都是由该领域的许多专家精心撰写的。”

Petar Velickovic - DeepMind 高级研究科学家

目录内容:

本书主要分为3部分: Introduction, Foundations of Graph Neural Networks, 和 Frontiers of Graph Neural Networks.

第一部分:引言 第 1 章 表示学习 第 2 章 图表示学习 第 3 章 图神经网络

第二部分:基础 第 4 章 用于节点分类的图神经网络 第 5 章 图神经网络的表达能力 第 6 章 图神经网络:可扩展性 第 7 章 图神经网络中的可解释性 第 8 章 图神经网络:对抗鲁棒性

第三部分:前沿 第 9 章 图神经网络:图分类 第 10 章 图神经网络:链接预测 第 11 章 图神经网络:图生成 第 12 章 图神经网络:图变换 第 13 章 图神经网络:图匹配 第 14 章 图神经网络:图结构学习 第 15 章 动态图神经网络 第 16 章 异构图神经网络 第 17 章 图神经网络:AutoML 第 18 章 图神经网络:自监督学习

第四部分:应用

第 19 章 现代推荐系统中的图神经网络 第 20 章 计算机视觉中的图神经网络 第 21 章 自然语言处理中的图神经网络 第 22 章 程序分析中的图神经网络 第 23 章 软件挖掘中的图神经网络 第 24 章 药物开发中基于 GNN 的生物医学知识图谱挖掘 第 25 章 预测蛋白质功能和相互作用的图神经网络 第 26 章 异常检测中的图神经网络 第 27 章 城市智能中的图神经网络

作者介绍

吴凌飞博士现任京东硅谷研发中心首席科学家。吴博士曾经是 IBM T. J. Watson Research Center 研究科学家和团队带头人。吴博士在 2016 年从威廉玛丽大学取得计算机博士学位。他的研究内容包括机器学习、表征学习和自然语言处理。

吴博士带领的 Graph4NLP (Deep Learning on Graphs for Natural Language Processing) 团队(12+ 研究科学家)致力于机器学习与文本数据挖掘领域的基础研究,并运用机器学习与文本数据挖掘方法解决实际问题。其学术成果先后发表在 NeurIPS, ICML, ICLR, ACL, EMNLP, KDD, AAAI, IJCAI 等国际顶级会议及期刊上,发表论文超过 80 多篇。代表作包括 IDGL, MGMN, Graph2Seq, GraphFlow。多项学术论文获得著名国际大会的最佳论文和最佳学术论文奖,包括 IEEE ICC 2019。

吴博士同时现任 IEEE 影响因子最高期刊之一 IEEE Transactions on Neural Networks and Learning Systems(TNNLS) 和 ACM SIGKDD 旗舰期刊 ACM Transactions on Knowledge Discovery from Data (TKDD) 的副主编。多次组织和担任国际顶级会议大会或者领域主席,如 AAAI, IJCAI, KDD, NeurIPS, ICLR, ICML, ACL, EMNLP。

崔鹏,清华大学计算机系长聘副教授。于 2010 年获得清华大学博士学位,研究兴趣包括因果正则机器学习(causally-regularized machine learning)、网络表示学习和社交动态建模。他在数据挖掘和多媒体领域知名会议和期刊上发表文章 100 多篇,近期研究获得 IEEE Multimedia Best Department Paper Award、ICDM 2015 最佳学生论文奖等多个奖项。2015 年,他获得 ACM 中国新星奖,2018 年获得 CCF-IEEE CS 青年科学家奖。目前,他是 ACM 和 CCF 杰出会员、IEEE 高级会员。

裴健在数据科学、大数据、数据挖掘和数据库系统等领域,是世界领先的研究学者,国际计算机协会(ACM)院士和国际电气电子工程师协会(IEEE)院士,擅长为数据密集型应用设计开发创新性的数据业务产品和高效的数据分析技术。因其在数据挖掘基础、方法和应用方面的杰出贡献,裴健曾获得数据科学领域技术成就最高奖 ACM SIGKDD Innovation Award(ACM SIGKDD 创新奖)和 IEEE ICDM Research Contributions Award(IEEE ICDM 研究贡献奖)。2018 年,裴健入职京东,任集团副总裁。此前,裴健教授还曾担任华为首席科学家。2019 年 9 月,裴健当选加拿大皇家学会院士。

赵亮现为埃默里大学担任计算机系助理教授,研究方向为数据挖掘、机器学习和优化。此前曾在乔治梅森大学信息科技学院和计算机学院担任助理教授。2016 年秋,赵亮获得弗吉尼亚理工大学的博士学位。此外,赵亮曾获 2020 年美国自然科学基金委员会杰出青年奖(NSF CAREER AWARD)、2019 年 Jeffress Trust Award、2017 年弗吉尼亚理工大学计算机学院杰出博士奖,并入选 2016 年微软评选出的数据挖掘领域 20 位学术新星。他还获得过 ICDM 2019 会议的最佳论文奖项。

成为VIP会员查看完整内容
1
130

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

这本第五版现代图论之标准教科书糅合了经典著作的杈威及生动活泼的吸引风格;此风格 正是动態数学的标記。此书以简洁而可靠的完整証明阐述图论的核心內容;亦透过一两个例子,配合详盡证明其深入结果,让读者涉猎每一个领域 的高深方法。

这书可作为导论课程的可靠教科书,或研究生读本及自修之用。

https://diestel-graph-theory.com/index.html

成为VIP会员查看完整内容
0
43

图论因其在计算机科学、通信网络和组合优化方面的应用而成为一门重要的学科。它与其他数学领域的互动也越来越多。虽然这本书可以很好地作为图表理论中许多最重要的主题的参考,但它甚至正好满足了成为一本有效的教科书的期望。主要关注的是服务于计算机科学、应用数学和运筹学专业的学生,确保满足他们对算法的需求。在材料的选择和介绍方面,已试图在基本的基础上容纳基本概念,以便对那些刚进入这一领域的人提供指导。此外,由于它既强调定理的证明,也强调应用,所以应该先吸收主题,然后对主题的深度和方法有一个印象。本书是一篇关于图论的综合性文章,主题是有组织的、系统的。这本书在理论和应用之间取得了平衡。这本书以这样一种方式组织,主题出现在完美的顺序,以便于学生充分理解主题。这些理论已经用简单明了的数学语言进行了描述。这本书各方面都很完整。它将为主题提供一个完美的开端,对主题的完美理解,以及正确的解决方案的呈现。本书的基本特点是,概念已经用简单的术语提出,并详细解释了解决过程。

这本书有10章。每一章由紧凑但彻底的理论、原则和方法的基本讨论组成,然后通过示例进行应用。本书所介绍的所有理论和算法都通过大量的算例加以说明。这本书在理论和应用之间取得了平衡。第一章介绍图。第一章描述了同构、完全图、二部图和正则图的基本和初等定义。第二章介绍了不同类型的子图和超图。本章包括图形运算。第二章还介绍了步行、小径、路径、循环和连通或不连通图的基本定义。第三章详细讨论了欧拉图和哈密顿图。第四章讨论树、二叉树和生成树。本章深入探讨了基本电路和基本割集的讨论。第五章涉及提出各种重要的算法,在数学和计算机科学中是有用的。第六章的数学前提包括线性代数的第一个基础。矩阵关联、邻接和电路在应用科学和工程中有着广泛的应用。第七章对于讨论割集、割顶点和图的连通性特别重要。第八章介绍了图的着色及其相关定理。第九章着重介绍了平面图的基本思想和有关定理。最后,第十章给出了网络流的基本定义和定理。

成为VIP会员查看完整内容
0
106

近几年,神经网络因其强大的表征能力逐渐取代传统的机器学习成为自然语言处理任务的基本模型。然而经典的神经网络模型只能处理欧氏空间中的数据,自然语言处理领域中,篇章结构,句法甚至句子本身都以图数据的形式存在。因此,图神经网络引起学界广泛关注,并在自然语言处理的多个领域成功应用。该文对图神经网络在自然语言处理领域中的应用进行了系统性的综述, 首先介绍了图神经网络的核心思想并梳理了三种经典方法: 图循环网络,图卷积网络和图注意力网络;然后在具体任务中,详细描述了如何根据任务特性构建合适的图结构以及如何合理运用图结构表示模型。该文认为,相比专注于探索图神经网络的不同结构,探索如何以图的方式建模不同任务中的关键信息,是图神经网络未来工作中更具普遍性和学术价值的一个研究方向。

http://jcip.cipsc.org.cn/CN/abstract/abstract3096.shtml

成为VIP会员查看完整内容
0
78

关于图信号处理、图分析、图机器学习比较全面的一本书,值得关注!

当前强大的计算机和庞大的数据集正在为计算数学创造新的机会,将图论、机器学习和信号处理的概念和工具结合在一起,创建图数据分析。

在离散数学中,图仅仅是连接一些点(节点)和线的集合。这些图表的强大之处在于,节点可以代表各种各样的实体,比如社交网络的用户或金融市场数据,这些可以转换成信号,然后使用数据分析工具进行分析。《图数据分析》是对生成高级数据分析的全面介绍,它允许我们超越时间和空间的标准常规采样,以促进建模在许多重要领域,包括通信网络,计算机科学,语言学,社会科学,生物学,物理学,化学,交通,城市规划,金融系统,个人健康和许多其他。

作者从现代数据分析的角度重新审视了图拓扑,并着手建立图网络的分类。在此基础上,作者展示了频谱分析如何引导最具挑战性的机器学习任务,如聚类,以直观和物理上有意义的方式执行。作者详细介绍了图数据分析的独特方面,例如它们在处理从不规则域获取的数据方面的好处,它们通过局部信息处理微调统计学习过程的能力,图上的随机信号和图移位的概念,从图上观察的数据学习图拓扑,以及与深度神经网络、多路张量网络和大数据的融合。包括了大量的例子,使概念更加具体,并促进对基本原则的更好理解。

本书以对数据分析的基础有良好把握的读者为对象,阐述了图论的基本原理和新兴的数学技术,用于分析在图环境中获得的各种数据。图表上的数据分析将是一个有用的朋友和伙伴,所有参与数据收集和分析,无论应用领域。

地址: https://www.nowpublishers.com/article/Details/MAL-078-1

Graph Signal Processing Part I: Graphs, Graph Spectra, and Spectral Clustering

图数据分析领域预示着,当我们处理数据类的信息处理时,模式将发生改变,这些数据类通常是在不规则但结构化的领域(社交网络,各种特定的传感器网络)获得的。然而,尽管历史悠久,目前的方法大多关注于图本身的优化,而不是直接推断学习策略,如检测、估计、统计和概率推理、从图上获取的信号和数据聚类和分离。为了填补这一空白,我们首先从数据分析的角度重新审视图拓扑,并通过图拓扑的线性代数形式(顶点、连接、指向性)建立图网络的分类。这作为图的光谱分析的基础,图拉普拉斯矩阵和邻接矩阵的特征值和特征向量被显示出来,以传达与图拓扑和高阶图属性相关的物理意义,如切割、步数、路径和邻域。通过一些精心选择的例子,我们证明了图的同构性使得基本属性和描述符在数据分析过程中得以保留,即使是在图顶点重新排序的情况下,在经典方法失败的情况下也是如此。其次,为了说明对图信号的估计策略,通过对图的数学描述符的特征分析,以一般的方式介绍了图的谱分析。最后,建立了基于图谱表示(特征分析)的顶点聚类和图分割框架,说明了图在各种数据关联任务中的作用。支持的例子展示了图数据分析在建模结构和功能/语义推理中的前景。同时,第一部分是第二部分和第三部分的基础,第二部分论述了对图进行数据处理的理论、方法和应用,以及从数据中学习图拓扑。

https://www.zhuanzhi.ai/paper/64f73fba1fafb627ee688a6feb117c15

Graph Signal Processing Part II: Processing and Analyzing Signals on Graphs

本专题第一部分的重点是图的基本性质、图的拓扑和图的谱表示。第二部分从这些概念着手,以解决围绕图上的数据/信号处理的算法和实际问题,也就是说,重点是对图上的确定性和随机数据的分析和估计。

https://www.zhuanzhi.ai/paper/ee501d68e18f34725aca6097f575bdc8

Graph Signal Processing -- Part III: Machine Learning on Graphs, from Graph Topology to Applications

许多关于图的现代数据分析应用都是在图拓扑而不是先验已知的领域上操作的,因此它的确定成为问题定义的一部分,而不是作为先验知识来帮助问题解决。本部分探讨了学习图拓扑。随着越来越多的图神经网络(GNN)和卷积图网络(GCN)的出现,我们也从图信号滤波的角度综述了GNN和卷积图网络的主要发展趋势。接着讨论了格结构图的张量表示,并证明了张量(多维数据数组)是一类特殊的图信号,图的顶点位于高维规则格结构上。本部分以金融数据处理和地下交通网络建模的两个新兴应用作为结论。

图片

https://www.zhuanzhi.ai/paper/b0a0a3b647f965a121a83343d4b47153

成为VIP会员查看完整内容
0
121

近年来,图神经网络(GNNs)由于具有建模和从图结构数据中学习的能力,在机器学习领域得到了迅猛发展。这种能力在数据具有内在关联的各种领域具有很强的影响,而传统的神经网络在这些领域的表现并不好。事实上,正如最近的评论可以证明的那样,GNN领域的研究已经迅速增长,并导致了各种GNN算法变体的发展,以及在化学、神经学、电子或通信网络等领域的突破性应用的探索。然而,在目前的研究阶段,GNN的有效处理仍然是一个开放的挑战。除了它们的新颖性之外,由于它们依赖于输入图,它们的密集和稀疏操作的组合,或者在某些应用中需要伸缩到巨大的图,GNN很难计算。在此背景下,本文旨在做出两大贡献。一方面,从计算的角度对GNNs领域进行了综述。这包括一个关于GNN基本原理的简短教程,在过去十年中该领域发展的概述,以及在不同GNN算法变体的多个阶段中执行的操作的总结。另一方面,对现有的软硬件加速方案进行了深入分析,总结出一种软硬件结合、图感知、以通信为中心的GNN加速方案。

成为VIP会员查看完整内容
0
158

内容概要:

在复杂的实际应用中,图是有用的数据结构,例如对物理系统进行建模,学习分子指纹,控制交通网络以及在社交网络中推荐朋友。但是,这些任务需要处理包含元素之间的丰富关系信息且无法通过传统深度学习模型(例如卷积神经网络(CNN)或递归神经网络(RNN))妥善处理的非欧氏图数据。图中的节点通常包含有用的特征信息,这些信息在大多数无监督的表示学习方法(例如,网络嵌入方法)中无法很好地解决。图神经网络(GNN)被提出来结合特征信息和图结构,以通过特征传播和聚集学习更好的图表示。由于其令人信服的性能和高解释性,GNN最近已成为一种广泛应用的图分析工具。

本书全面介绍了图神经网络的基本概念,模型和应用。首先介绍了vanilla GNN模型。然后介绍了vanilla模型的几种变体,例如图卷积网络,图递归网络,图注意力网络,图残差网络和一些通用框架。还包括不同图类型的变体和高级训练方法。对于GNN的应用,该书分为结构,非结构和其他场景,然后介绍了解决这些任务的几种典型模型。最后,最后几章提供了GNN的开放资源以及一些未来方向的展望。

本书组织如下。在第1章中进行了概述之后,在第2章中介绍了数学和图论的一些基本知识。在第3章中介绍了神经网络的基础,然后在第4章中简要介绍了香草GNN。四种类型的模型分别在第5、6、7和8章中介绍。在第9章和第10章中介绍了不同图类型和高级训练方法的其他变体。然后在第11章中提出了几种通用的GNN框架。第12、13和14章介绍了GNN在结构场景,非结构场景和其他场景中的应用。最后,我们在第15章提供了一些开放资源,并在第16章总结了这本书。

作者:

刘知远,清华大学计算机系自然语言处理实验室, 副教授。2006年获得清华大学计算机科学与技术系学士学位,2011年获得博士学位。他的研究兴趣是自然语言处理和社会计算。在IJCAI、AAAI、ACL、EMNLP等国际期刊和会议上发表论文60余篇。

http://nlp.csai.tsinghua.edu.cn/~lzy/index_cn.html

周界是清华大学计算机科学与技术系硕士二年级学生。他于2016年获得清华大学学士学位。他的研究兴趣包括图形神经网络和自然语言处理。

图书目录:

  • 前言
  • 致谢
  • 第一章: 引言
  • 第二章: 数学和图的基础知识
  • 第三章: 神经网络的基础知识
  • 第四章: Vanilla 图神经网络
  • 第五章: 图卷积网络
  • 第六章: 图递归网络
  • 第七章: 图注意力网络
  • 第八章 : 图残差网络
  • 第九章: 同图形型的变体
  • 第十章: 高级训练方法的变体
  • 第十一章: 一般框架
  • 第十二章: 应用——结构场景
  • 第十三章: 应用——非结构性场景
  • 第十四章: 应用——其他场景
  • 第十五章: 开放资源
  • 第十六章: 结论
  • 参考书目
成为VIP会员查看完整内容
0
289

【导读】图表示学习是当下研究的热点之一。HEC 蒙特利尔大学商学院助理教授唐建唐建博士最近总结了《图表示学习》研究进展,总结了他和组里学生们和这些年来在图表示学习方向上比较重要的工作。非常值得学习!

唐建博士自2017年12月起担任Mila(魁北克AI研究所)和HEC Montreal的助理教授。他是加拿大CIFAR第一批人工智能主席(CIFAR AI Research Chair)。他的研究方向是深度图表示学习,在知识图谱、药物发现和推荐系统等领域有着广泛的应用。他是密歇根大学和卡内基梅隆大学的研究员。他在北京大学获得博士学位,并在密歇根大学做了两年的访问学者。他在微软亚洲研究院做了两年的研究员。他在图表示学习(如LINE、LargeVis和RotatE)方面的工作得到了广泛的认可。他获得了ICML ' 14的最佳论文奖和WWW ' 16的最佳论文提名。

个人主页: https://jian-tang.com/

图表示学习:算法与应用

图在现实世界中是无处不在的,涵盖了从社交网络、推荐系统、知识图谱、计算机视觉和药物发现等各种应用。要分析图数据,一个重要的先决条件是要有有效的图数据表示,这在很大程度上决定了大多数下游任务的性能。在本报告中,我将介绍图的学习表示的最新进展,如节点表示学习、图的可视化、知识图谱的嵌入、图的神经网络、图的生成及其在各种任务中的应用。

地址: https://github.com/tangjianpku/tangjianpku.github.io/blob/master/files/GraphRepresentationLearning-Mila-2020.5.pdf

成为VIP会员查看完整内容
0
85

本文采用了一种独特的机器学习方法,它包含了对进行研究、开发产品、修补和玩耍所必需的所有基本概念的全新的、直观的、但又严谨的描述。通过优先考虑几何直观,算法思维,和实际应用的学科,包括计算机视觉,自然语言处理,经济学,神经科学,推荐系统,物理,和生物学,这篇文章为读者提供了一个清晰的理解基础材料以及实际工具需要解决现实世界的问题。通过深入的Python和基于MATLAB/ octave的计算练习,以及对前沿数值优化技术的完整处理,这是学生的基本资源,也是从事机器学习、计算机科学、电子工程、信号处理和数值优化的研究人员和实践者的理想参考。其他资源包括补充讨论主题、代码演示和练习,可以在官方教材网站mlrefined.com上找到。

  • 建立在清晰的几何直觉上的讲述
  • 最先进的数值优化技术的独特处理
  • 逻辑回归和支持向量机的融合介绍
  • 将功能设计和学习作为主要主题
  • 通过函数逼近的视角,先进主题的无与伦比的呈现
  • 深度神经网络和核方法的细化描述
成为VIP会员查看完整内容
0
135
小贴士
相关VIP内容
专知会员服务
43+阅读 · 2021年10月14日
专知会员服务
106+阅读 · 2021年8月2日
专知会员服务
78+阅读 · 2021年4月18日
专知会员服务
76+阅读 · 2020年11月7日
专知会员服务
158+阅读 · 2020年10月3日
【新书】图神经网络导论,清华大学刘知远老师著作
专知会员服务
289+阅读 · 2020年6月12日
相关资讯
书单 | 计算机图形学必读的10本书
微软研究院AI头条
5+阅读 · 2019年4月16日
新书推荐《推荐系统进展:方法与技术》
LibRec智能推荐
10+阅读 · 2019年3月18日
清华大学图神经网络综述:模型与应用
机器之心
56+阅读 · 2018年12月26日
CNN已老,GNN来了!清华大学孙茂松组一文综述GNN
图神经网络综述:模型与应用
PaperWeekly
171+阅读 · 2018年12月26日
相关论文
Jin Xu,Xu Tan,Renqian Luo,Kaitao Song,Jian Li,Tao Qin,Tie-Yan Liu
8+阅读 · 2021年5月30日
Thomas Hubert,Julian Schrittwieser,Ioannis Antonoglou,Mohammadamin Barekatain,Simon Schmitt,David Silver
4+阅读 · 2021年4月13日
Jointly Modeling Aspect and Sentiment with Dynamic Heterogeneous Graph Neural Networks
Shu Liu,Wei Li,Yunfang Wu,Qi Su,Xu Sun
8+阅读 · 2020年4月14日
Seongjun Yun,Minbyul Jeong,Raehyun Kim,Jaewoo Kang,Hyunwoo J. Kim
10+阅读 · 2020年2月5日
Quan Wang,Pingping Huang,Haifeng Wang,Songtai Dai,Wenbin Jiang,Jing Liu,Yajuan Lyu,Yong Zhu,Hua Wu
6+阅读 · 2019年11月6日
Tensor Graph Convolutional Networks for Prediction on Dynamic Graphs
Osman Asif Malik,Shashanka Ubaru,Lior Horesh,Misha E. Kilmer,Haim Avron
6+阅读 · 2019年10月16日
Meta-GNN: On Few-shot Node Classification in Graph Meta-learning
Fan Zhou,Chengtai Cao,Kunpeng Zhang,Goce Trajcevski,Ting Zhong,Ji Geng
5+阅读 · 2019年5月23日
Chengsheng Mao,Liang Yao,Yuan Luo
7+阅读 · 2019年3月31日
Analysis Methods in Neural Language Processing: A Survey
Yonatan Belinkov,James Glass
4+阅读 · 2019年1月14日
Deep Graph Infomax
Petar Veličković,William Fedus,William L. Hamilton,Pietro Liò,Yoshua Bengio,R Devon Hjelm
9+阅读 · 2018年12月21日
Top
微信扫码咨询专知VIP会员