【简明书】数学,统计和机器学习的动手入门,57页pdf

2022 年 3 月 3 日 专知


这本书的目的是用最简单的方法来教机器学习。来自在线社区的例子,如Stack Overflow、Beyond Data Science和开源ML网站,往往难以理解。我们为经理、技术总监、程序员、产品经理以及其他想要学习更多机器学习知识的人写了这本书。也许你读过一些关于神经网络、回归、TensorFlow或分类的东西,现在你想知道如何使用这些工具在你自己的组织中解决问题。或者,也许你想进入这个领域作为一个新的职业或挣更高的薪水。我们从最基础的开始——基本的统计和代数——然后再以此为基础。这是因为机器学习是应用数学。如果你不懂基本的代数,那么你永远也理解不了ML。幸运的是,你不需要任何比这更复杂的概念。


  • 基本描述性统计。我们回顾正态曲线、标准差、均值和方差。这些统计概念衡量机器学习模型的准确性。另外,在编写代码之前,在选择ML算法之前,它们通常是查看数据集的第一步。


  • 基础代数和相关。这是对数据之间关系的研究。只有当数据呈正相关时,才能构建预测模型,因此我们将介绍如何确定输出是否与输入相关。否则你只是在浪费时间。


  • 回归。一旦确定了输入和输出数据集之间存在某种相关性,就可以寻找描述这种关系的函数。最简单的情况是y = mx + b,这是简单的线性回归。有一个扎实的理解是很重要的,因为大多数机器学习,甚至神经网络,都是对基本回归思想的扩展。


  • 分类。这是一个预测模型,其结果是离散的,而不是实数。换句话说,y = mx + b产生一个浮点数(实数)。但你的结果可能是一组数字中的一个,比如1 2 3 4或5。举个例子,看看手写的数字,看看它们是0,1,2,…,还是9。

  • 决策。将数据点分组。例如,您可能希望根据一些共同特征对人们进行分组,例如根据血压、血糖等对他们的医疗状况进行分组。或者你想根据不同的生活质量问题来划分城市。


  • 决策树。一种正式的决策方式,比如是否根据决定某人偿还贷款的能力和可能性的因素来决定是否给某人贷款。


  • 神经网络。神经网络可以进行分类或回归。不同之处在于它的设计是为了在非常大的范围内工作。例如,当Facebook给某人的照片加上一个名字时,这是因为你已经给了他们足够的例子,他们可以这样做。类似地,一款可以识别植物的应用程使用神经网络。它通过拍摄一张照片并将其压缩成像素,然后根据这些像素的排列做出预测来实现这一点。语音识别也是如此。


https://www.bmc.com/


目录内容:


3 Introduction 

5 Requisite Skills & Software 

6 What is Machine Learning? 

8 The Basics: Descriptive Statistics 

12 The Basics: Algebra & Correlation 

13 Linear Regression 

23 Logistic Regression 

38 Classification: K-means Clustering 

43 Classification: Decision Trees 

46 Neural Networks 

56 Additional Resources 

57 Author Bio




专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“ML57” 就可以获取【简明书】数学,统计和机器学习的动手入门,57页pdf》专知下载链接

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取70000+AI主题知识资源
登录查看更多
5

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【新书】统计学傻瓜式入门第二版,451页pdf
专知会员服务
109+阅读 · 2021年11月5日
专知会员服务
252+阅读 · 2021年10月8日
专知会员服务
117+阅读 · 2021年10月6日
【经典书】机器学习统计学,476页pdf
专知会员服务
120+阅读 · 2021年7月19日
【经典书】R机器学习入门:严格的数学分析,225页pdf
专知会员服务
61+阅读 · 2021年2月16日
【干货书】Python机器学习及金融应用,384页pdf
专知会员服务
134+阅读 · 2021年1月1日
人工智能十大流行算法
THU数据派
0+阅读 · 2022年2月14日
100页机器学习入门完整版,初学者必备!
专知
25+阅读 · 2018年12月18日
入门 | 一文介绍机器学习中基本的数学符号
机器之心
28+阅读 · 2018年4月9日
机器学习必备手册
机器学习研究会
19+阅读 · 2017年10月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
26+阅读 · 2018年8月19日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员